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INTRODUCTION 
WALL BOUNDED TURBULENCE 

Buffer layer quasi-streamwise vortices

*5 decades of research; well established characteristics.  
*Contribute to more than 80% to the Reynolds shear stress. 

 *Universal, the streamwise vorticity within the QSV’s depends slightly on Re number. 
* Huge literature (see Tardu, Wiley, 2014) 



Large and very large scale passive 
motions

Buffer layer (active) structures contribute mostly to the Reynolds shear stress  Independence via Re : They 
contribute In majority to the longitudinal and spanwise turbulent intensities (but, the passive structures 
play an important role at large (enough) Reynolds numbers).

Marusic’s group, Adrian’s group, Jiménez group, Tardu (1995, 2001)….



AIM

•  Review of some large-scale effects 
in the wall turbulence

•  CLUSTERS OF ACTIVE EDDIES
•  Phenomenology
•  MODELLING



 DNS
   *Large computational domains as in (Hoyas, Jiménez 2006)

** NS with Dispersion Relation Preserving spatial schemes, See Bauer, Tardu and 
Doche, Comp. Fluids 2014. Similar to compact schemes but 20% more rapid. See also 
Tardu& Bauer, Comp. Fluids, 2017, Tardu IJHFF, 2017, Tardu PoF, 2017…

ALL THE QUANTITIES ARE SCALED BY THE INNER VARIABLES, viscosity and wall shear 
velocity, HEREAFTER

€ 

Reτ =
u τ h
ν

;  Shear velocity u τ = τ /ρ;  τ  : wall shear stress ; + : Scaled by u τ  and viscosity ν



Large-Scale Motions

•  A  Reynolds  number  dependence  of  any  quantity  q,  scaled  with  inner 
variables, i.e. shear velocity                  and viscosity      (      ) necessarily 
imply the impact of large-scales

•  TOWNSEND ATTACHED EDDY CONCEPT
€ 

u τ = τw /ρ

€ 

ν

€ 

q+

€ 

Restrictive to Re→∞ and the equilibrium log layer.
==>  Streamwise and spanwise velocity intensities 
depend on Re but NOT wall normal velocity and the 

Reynolds shear stress



LSM&VLSM 
Reynolds shear stresses

•  Turbulent intensity of streamwise velocity fluctuations
One of the most sensitive and well documented quantity
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Maximum streamwise turbulent intensity vs Re

€ 

uu profiles at two different Re (DeGraff & Eaton,  2000)
and prediction of Marusic & Kunkel,  2003.



LSM&VLSM 
Weighted spectra (LEGI_DNS)

€ 

Weighted spectra kx
+kz

+Eui
' ui

' ;  Black lines Reτ = 390,  colors Reτ = 1100
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Streamwise;  BUFFER LAYER

€ 

Streamwise;  LOG LAYER

€ 

Spanwise;  LOG LAYER

€ 

Spanwise;  BUFFER LAYER



LSM& VLSM 
(Roughly) Re independent, robust shear stresses
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Weighted spectra kx
+kz

+Eui
' ui

' ;  Black lines Reτ = 390,  colors Reτ = 1100
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WALL NORMAL;  BUFFER LAYER
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WALL NORMAL;  LOG − LAYER
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Re− Shear stress;  LOG − LAYER
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Re− Shear stress;  BUFFER LAYER

!!! 



Some robust LSM independent (roughly 
speaking) flow quantities: wall normal vorticity  

and shear layers (Tardu&Bauer, EJM_B 2016)

€ 

Vorticity components rms
Wall normal vorticity is spectacularly

independent of the Re number
€ 

Spanwise gradient of the streamwise velocity
shear layers :  independent of Re

€ 

CONCLUSION : Large number of flow quantities influenced by large- scales



Dissipation (at the wall)

€ 

Reτ = 700 :  Limit Re number 
from which 

LSM effects  take over inner 
active eddies



Key elements for modeling_understanding 
VORTEX CLUSTERS

•  No body has clearly and irrefutably identified a Large Scale Motion and even less a 
very large scale motion.

•  OPT HERE FOR:
•  LARGE_SCALE  MOTION:  CLUSTERING  OF  QUASI_STREAMWISE  VORTICES  IN  THE 

BUFFER LAYER (EXIST AT ALL REYNOLDS NUMBERS: PACKETS OF QSV. 
•  VERY_LARGE_SCALE MOTIONS: CLUSTERING OF CLUSTERS OF QUASI_STREAMWISE 

VORTICES:  presumably in the log layer and presumably at some large Reynolds 
numbers.

•  AIM and PRINCIPAL CONTRIBUTION HERE:
INTRODUCE A MODEL TO DESCRIBE CLUSTERING and estimate the 

occurrence probability of CLUSTERS of VORTEX CLUSTERS (VLSM)



Vortex clusters  
Double Poissonian process in time

Stayed longtime enigmatic (to me): no clear model in the literature; there are 
also some misinterpretation from my point of view (Kailasnath, 
Sreenivasan, PoF 1993
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Modeling the clusters  
Break-point in the interaarival time cumulative probability 

Markoff Chain to model Double Poisson Process

•  Markoff chain that contains 3 states (memoryless process, the outcome depends on the 
current state. Coupling two independent Poisson processes.

•  This model has been applied to Ice particle intearrival times in clouds (Field et al., 2003)
•  State 0 : Presence (passage) of a Quasi-Streamwise Vortex (QSV) within a given time 

interval δt
•  States 1 and 2 : Waiting states. Absence of QSV within δt.
•   The arrows are annotated with their respective probabilities of occurrence: Ex: the arrow 

linking state 1 to state 0 represents the observation of an event for a Poisson process 
with the mean arrival rate 

•  A is is a measure of clustering
•  It is not possible to go from state 1 directly to state 2, without going through the 

intermediate state 0.
€ 

1/τ1



Modeling the clusters

•  Transition Matrix:

*1)Probability of going from state 0 to 1 and remaining in 1 for n time intervals before going 
to 0

*2)Probability of going from state 0 to 2 and remaining in 2 for n time intervals before going 
to 0

Sum 1+2 and taking the limits :Cumulative probability of interarrival times:
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Perfect collapse between the model 
and experiments
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y+ =12,   Mean interarrival time between the QSV of the packets τ1
+ =14 (MEASURED)

Total process is Poisonnian with τ1 + τ 2 =
1
fr

;    fr :QSV regeneration frequency (MEASURED)

==>  fr
+ = 0.014 ==> τ 2

+ = 57

                     A =
τ1

τ1 + τ 2
= 0.22 (MEASURED)



Probability of the occurrence of very 
large scale motions VLSM (clusters of 

LSM)

•  The interesting point is that the model allows a simple estimation of the 
probability of having VLSM, i.e. clustering of the packets.



Probability p of the occurrence of very large 
scale motions VLSM (clusters of LSM)

This probability is proportional to:

Since log(A)<0, the slop is negative, and the VLSM formed from 
both large LSM (N) and increasingly greater alignment of LSM 
become  less  frequent.  Larger  are  LSM  rare  are 
VLSM!!!!

€ 

p∝ AN1 +N 2 +...NΞ+Ξ−1

Ni : Number of structures in LSM i;   Ξ :  Number of alligned LSM

€ 

€ 

Uniform distribution Ni = N;  Absence of VLSM :Ξ =1

==> log
p Ξ >1( )
p Ξ =1( )

= Ξ−1( ) N +1( )log A      (Ξ≠1)



Fine modeling of 
Large_Scale_Motions (Undergoing)

•  mzttr



Occurrence of LSM is very 
similar to the Hawkes process
•  Self exciting non homogeneous Poisson point process (Hawkes, 1971):
•  Seismology:  Earthquake  and  subsequent  aftershocks,  neuroscience, 

epidemiology, insurance and finance
•  Processes  whose  behavior  is  modified  by  the  past  events  which  are  self 

excited and externally excited (A QSV of sufficient strength and enough close 
to the wall  –Immigrant in the Hawkes terminology) induce a close in time 
secondary structure (offspring, children). 

•  Perfectly compatible with the random non linear excitation of the Landahl’s 
model (previous slight).

         Instantaneous arrival rate of a Hawkes process and clusters (packets)



Large_scale-motions and Hawkes 
process (undergoing)

•  Excitation function is exponential. Instantaneous rate

•  Covariance density

                                        THE PROCESS IS LONG RANGE DEPENDENT
            IMPACT OF THE CLUSTERS ON THE 

         LARGE-SCALE SPECTRAL BEHAVIOUR
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λ*(t) = λ + α e−β ( t−ti )
ti <t
∑

€ 

Rc τ( ) = λ*δ(t) + R τ( ) = λ*δ(t)  +    
αβλ 2β −α( )

2 β −α( )2 e−(β−α )τ



Large_scale-motions and 
Hawkes process (undergoing)

•  SPECTRUM:
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S(ω) =
λβ

2π β −α( )
1+

α 2β −α( )
β −α( )2 +ω2
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LARGE SCALE CONTRIBUTION . AT ω = 0 :  
α 2β −α( )
β −α( )2

Both α Re( ) and β Re( )
CHALLENGE :  

DEVELOP THE MODEL TO PREDICT Re dependency



Happy birthday Fabien

Fabien in Little China at Shenzhen (March 2019). After 
long researches the whole day, he unfortunately could find 
anything about  TOUTANKHAMON. 


