

Turbulence and dissipation in the solar wind

Alain Noullez

with R. Marino, L. Sorriso, V. Carbone, R. Bruno, ...

C.N.R.S., U.C.A., Observatoire de la Côte d'Azur, Nice, France Email: anz@obs-nice.fr

Fluid turbulence Applications in Both Industrial and ENvironmental topics, FAB 60, Marseille, France, July 2019

The solar wind

Measurements in the solar wind

Wind velocity measured by the Helios 2 spacecraft during the year 1976

K

N

Magnetic fluctuations in the solar wind

Magnetic field measurements by the Helios 2 spacecraft during the year 1976

Turbulence in the solar wind

Turbulence in the solar wind

Power spectrum of the magnetic fluctuations

Turbulent spectrum in the solar wind

Magnetic power spectra measured by the Helios 2 spacecraft at different distances

Examples of power spectra

Brownian noise $S_{ww}(\nu) = (2\pi\nu)^{-2} \stackrel{?}{=} \text{Sawtooth wave } S_{ss}(\nu) = (2\pi\nu)^{-2}$

Examples of power spectra

Brownian noise $S_{ww}(\nu) = (2\pi\nu)^{-2} \stackrel{?}{=} \text{Sawtooth wave } S_{ss}(\nu) = (2\pi\nu)^{-2}$

Same spectrum but different type and distribution of singularities ⇒ Necessity to look at other quantities... Higher-order moments ? K

Irreversibility of time

Irreversibility of time

Statistics of gradients or increments are not invariant by time-reversal

Energy injection, transfer and dissipation

Ando Hiroshige, The Naruto rapids

Consider the velocity difference u_{ℓ} between two points separated by a distance ℓ . How can it be annihilated ?

Consider the velocity difference u_{ℓ} between two points separated by a distance ℓ . How can it be annihilated ?

• Dissipation by viscosity

$$\partial_t u = \nu \partial_{xx}^2 u \quad \Rightarrow \quad \tau_{\mathrm{D}}(\ell) \sim \frac{\ell^2}{\nu}$$

Consider the velocity difference u_ℓ between two points separated by a distance ℓ . How can it be annihilated ?

• Dissipation by viscosity

$$\partial_t u = \nu \partial_{xx}^2 u \quad \Rightarrow \quad \tau_{\rm D}(\ell) \sim \frac{\ell^2}{\nu}$$

• Non-linearity

$$\partial_t u + u \,\partial_x u = 0 \quad \Rightarrow \quad \tau_{\rm NL}(\ell) \sim \frac{\ell}{u_\ell}$$

Consider the velocity difference u_{ℓ} between two points separated by a distance ℓ . How can it be annihilated ?

• Dissipation by viscosity

$$\partial_t u = \nu \partial_{xx}^2 u \quad \Rightarrow \quad \tau_{\rm D}(\ell) \sim \frac{\ell^2}{\nu}$$

• Non-linearity

$$\partial_t u + u \,\partial_x u = 0 \quad \Rightarrow \quad \tau_{\rm NL}(\ell) \sim \frac{\ell}{u_\ell}$$

The ratio of these two times at large scale is the Reynolds number

$$\frac{\tau_{\rm D}(L)}{\tau_{\rm NL}(L)} = \Re = \frac{UL}{\nu}$$

$$\varepsilon_D = U^2 / \tau_{\rm D}(L)$$

$$\varepsilon_D = \nu U^2 / L^2$$

$$\varepsilon_L = U^2 / \tau_{\rm NL}(L)$$

$$\varepsilon_L = U^3/L$$

Injection

$$\varepsilon_L = U^3/L$$

Transfer

$$arepsilon_\ell = u_\ell^3/\ell$$

Injection

$$\varepsilon_L = U^3/L$$

Transfer

$$\varepsilon_\ell = u_\ell^3/\ell = \varepsilon_L$$

$$\varepsilon_L = U^3/L$$

Transfer

$$arepsilon_\ell = u_\ell^3/\ell = arepsilon_L$$

$$\varepsilon_\eta = u_\eta^3 / \eta$$

Injection

$$\varepsilon_L = U^3/L$$

Transfer

$$arepsilon_\ell = u_\ell^3/\ell = arepsilon_L$$

$$arepsilon_\eta = u_\eta^3/\eta = u_\eta^2/ au_{\mathrm{D}}(\eta)$$

Injection

$$\varepsilon_L = U^3/L$$

Transfer

$$arepsilon_\ell = u_\ell^3/\ell = arepsilon_L$$

$$arepsilon_\eta = u_\eta^3/\eta =
u \, u_\eta^2/\eta^2$$

Injection

$$\varepsilon_L = U^3/L$$

Transfer

$$arepsilon_\ell = u_\ell^3/\ell = arepsilon_L$$

$$\varepsilon_{\eta} = u_{\eta}^3/\eta = \nu \, u_{\eta}^2/\eta^2 = \varepsilon_L$$

Cascade down to the Kolmogorov scale

$$\eta = \left(\frac{\nu^3}{\varepsilon}\right)^{1/4}, \qquad u_\eta = (\nu\varepsilon)^{1/4}, \qquad \Re_\eta = \left(\frac{u_\eta \eta}{\nu}\right) = 1$$

Take the difference of Navier-Stokes equations

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \, \boldsymbol{u} = \frac{-1}{
ho} \, \boldsymbol{\nabla}_{\boldsymbol{x}} \, P + \nu \, \nabla_{\boldsymbol{x}}^2 \, \boldsymbol{u} + \boldsymbol{f}$$

at two points x and $x' \equiv x + r$ to get an equation for the velocity difference $\Delta u(r; x, t) \equiv u(x + r, t) - u(x, t)$

Take the difference of Navier-Stokes equations

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \, \boldsymbol{u} = \frac{-1}{
ho} \, \boldsymbol{\nabla}_{\boldsymbol{x}} \, P + \nu \, \nabla_{\boldsymbol{x}}^2 \, \boldsymbol{u} + \boldsymbol{f}$$

at two points x and $x' \equiv x + r$ to get an equation for the velocity difference $\Delta u(r; x, t) \equiv u(x + r, t) - u(x, t)$ then multiply by $2\Delta u$ and average over the space x to get

$$\partial_t \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle + \boldsymbol{\nabla}_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = 2 \, \nu \, \nabla_{\boldsymbol{r}}^2 \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle - 4 \, \nu \, \left\langle |\boldsymbol{\nabla} \boldsymbol{u}|^2 \right\rangle$$

Take the difference of Navier-Stokes equations

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \, \boldsymbol{u} = \frac{-1}{
ho} \, \boldsymbol{\nabla}_{\boldsymbol{x}} \, P + \nu \, \nabla_{\boldsymbol{x}}^2 \, \boldsymbol{u} + \boldsymbol{f}$$

at two points \boldsymbol{x} and $\boldsymbol{x}' \equiv \boldsymbol{x} + \boldsymbol{r}$ to get an equation for the velocity difference $\Delta \boldsymbol{u}(\boldsymbol{r}; \boldsymbol{x}, t) \equiv \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{r}, t) - \boldsymbol{u}(\boldsymbol{x}, t)$ then multiply by $2\Delta \boldsymbol{u}$ and average over the space \boldsymbol{x} to get

$$\partial_t \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle + \boldsymbol{\nabla}_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = 2 \, \nu \, \nabla_{\boldsymbol{r}}^2 \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle - 4 \, \nu \, \left\langle |\boldsymbol{\nabla} \boldsymbol{u}|^2 \right\rangle$$

so that in stationary conditions and in the limit $\nu \rightarrow 0$

$$\nabla_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = -4 \varepsilon \qquad \varepsilon \equiv -\frac{\mathrm{d}E}{\mathrm{d}t} = \nu \left\langle |\nabla \boldsymbol{u}|^2 \right\rangle$$

Take the difference of Navier-Stokes equations

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \, \boldsymbol{u} = \frac{-1}{
ho} \, \boldsymbol{\nabla}_{\boldsymbol{x}} \, P + \nu \, \nabla_{\boldsymbol{x}}^2 \, \boldsymbol{u} + \boldsymbol{f}$$

at two points \boldsymbol{x} and $\boldsymbol{x}' \equiv \boldsymbol{x} + \boldsymbol{r}$ to get an equation for the velocity difference $\Delta \boldsymbol{u}(\boldsymbol{r}; \boldsymbol{x}, t) \equiv \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{r}, t) - \boldsymbol{u}(\boldsymbol{x}, t)$ then multiply by $2\Delta \boldsymbol{u}$ and average over the space \boldsymbol{x} to get

$$\partial_t \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle + \boldsymbol{\nabla}_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = 2 \,\nu \, \nabla_{\boldsymbol{r}}^2 \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle - 4 \,\nu \, \left\langle |\boldsymbol{\nabla} \boldsymbol{u}|^2 \right\rangle$$

so that in stationary conditions and in the limit $\nu \rightarrow 0$

$$\nabla_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = -4 \varepsilon \qquad \varepsilon \equiv -\frac{\mathrm{d}E}{\mathrm{d}t} = \nu \left\langle |\nabla \boldsymbol{u}|^2 \right\rangle$$

which in case of isotropy implies $\langle |\Delta u|^2 \Delta u \rangle = -4/3 \ \varepsilon \ r$ (Yaglom)

Take the difference of Navier-Stokes equations

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \, \boldsymbol{u} = \frac{-1}{
ho} \, \boldsymbol{\nabla}_{\boldsymbol{x}} \, P + \nu \, \nabla_{\boldsymbol{x}}^2 \, \boldsymbol{u} + \boldsymbol{f}$$

at two points \boldsymbol{x} and $\boldsymbol{x}' \equiv \boldsymbol{x} + \boldsymbol{r}$ to get an equation for the velocity difference $\Delta \boldsymbol{u}(\boldsymbol{r}; \boldsymbol{x}, t) \equiv \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{r}, t) - \boldsymbol{u}(\boldsymbol{x}, t)$ then multiply by $2\Delta \boldsymbol{u}$ and average over the space \boldsymbol{x} to get

$$\partial_t \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle + \boldsymbol{\nabla}_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = 2 \, \nu \, \nabla_{\boldsymbol{r}}^2 \left\langle |\Delta \boldsymbol{u}|^2 \right\rangle - 4 \, \nu \, \left\langle |\boldsymbol{\nabla} \boldsymbol{u}|^2 \right\rangle$$

so that in stationary conditions and in the limit $\nu \rightarrow 0$

$$\nabla_{\boldsymbol{r}} \cdot \left\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \right\rangle = -4 \varepsilon \qquad \varepsilon \equiv -\frac{\mathrm{d}E}{\mathrm{d}t} = \nu \left\langle |\nabla \boldsymbol{u}|^2 \right\rangle$$

which in case of isotropy implies $\langle |\Delta \boldsymbol{u}|^2 \Delta \boldsymbol{u} \rangle = -4/3 \ \varepsilon \, \boldsymbol{r}$ (Yaglom) and using local isotropy again $\langle [\Delta u_i]^3 \rangle = -4/5 \ \varepsilon \, r_i$ (Kolmogorov)

- Scale by scale energy conservation \Rightarrow no pileup of energy
- Increasing generality (Monin's law valid for anisotropic flows)
- Increasing experimental difficulty

K

In the inertial range

$$\begin{split} L \ll \ell \ll \eta \\ \langle (\Delta u_{\parallel}(\ell))^3 \rangle = -4/5 \, \varepsilon \, \ell \end{split}$$

In the inertial range

$$\begin{split} L \ll \ell \ll \eta \\ \langle (\Delta u_{\parallel}(\ell))^3 \rangle = -4/5 \, \varepsilon \, \ell \end{split}$$

By self-similarity $\begin{array}{l} \langle (\Delta u_{\parallel}(\ell))^p \rangle = C_p \, (\varepsilon \, \ell)^{p/3} \\ \langle (\Delta u_{\parallel}(\ell))^2 \rangle = C_2 \, (\varepsilon \, \ell)^{2/3} \end{array}$

In the inertial range

$$\begin{split} L \ll \ell \ll \eta \\ \langle (\Delta u_{\parallel}(\ell))^3 \rangle = -4/5 \, \varepsilon \, \ell \end{split}$$

By self-similarity $\langle (\Delta u_{\parallel}(\ell))^p \rangle = C_p (\varepsilon \ell)^{p/3}$ $\langle (\Delta u_{\parallel}(\ell))^2 \rangle = C_2 (\varepsilon \ell)^{2/3}$

$$E(k) = C_{\rm K} \, \varepsilon^{2/3} \, k^{-5/3}$$

In the inertial range $$\begin{split} L \ll \ell \ll \eta \\ \langle (\Delta u_{\parallel}(\ell))^3 \rangle = -4/5 \, \varepsilon \, \ell \end{split}$$

By self-similarity $\langle (\Delta u_{\parallel}(\ell))^p \rangle = C_p \, (\varepsilon \, \ell)^{p/3}$ $\langle (\Delta u_{\parallel}(\ell))^2 \rangle = C_2 \, (\varepsilon \, \ell)^{2/3}$

$$E(k) = C_{\rm K} \, \varepsilon^{2/3} \, k^{-5/3}$$

Magneto-Hydrodynamics

For a charged fluid at velocities $u \ll c$ in a mean magnetic field B_0 velocity u and magnetic field b perturbations obey the MHD equations

$$\nabla \cdot \boldsymbol{u} = \nabla \cdot \boldsymbol{b} = 0 \qquad \boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{b}$$
$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{1}{4\pi\rho} (\nabla \times \boldsymbol{b}) \times \boldsymbol{B} + \nu \nabla^2 \boldsymbol{u}$$
$$\partial_t \boldsymbol{b} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{b}$$

Magneto-Hydrodynamics

For a charged fluid at velocities $u \ll c$ in a mean magnetic field B_0 velocity u and magnetic field b perturbations obey the MHD equations

$$\nabla \cdot \boldsymbol{u} = \nabla \cdot \boldsymbol{b} = 0 \qquad \boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{b}$$
$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{1}{4\pi\rho} (\nabla \times \boldsymbol{b}) \times \boldsymbol{B} + \nu \nabla^2 \boldsymbol{u}$$
$$\partial_t \boldsymbol{b} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{b}$$

Consider the Elsässer variables $\boldsymbol{z}^{\pm} = \boldsymbol{u} \pm \left(4\pi\rho\right)^{-1/2} \boldsymbol{b}$

$$\nabla \cdot \boldsymbol{z}^{\pm} = 0$$

 $\partial_t \boldsymbol{z}^{\pm} + \boldsymbol{z}^{\mp} \cdot \boldsymbol{\nabla} \boldsymbol{z}^{\pm} = -\boldsymbol{\nabla} p^{\star} + \boldsymbol{c}_{\mathrm{A}} \cdot \boldsymbol{\nabla} \boldsymbol{z}^{\pm} + \nu^{\pm} \nabla^2 \boldsymbol{z}^{\pm} + \nu^{\mp} \nabla^2 \boldsymbol{z}^{\mp}$

where c_A is the Alfvén velocity $(4\pi\rho)^{-1/2}B_0$ and $\nu^{\pm} = (\nu \pm \eta)/2$

Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations, excepted that one of the Elsässer variables z^{\pm} is transported by the other z^{\mp}

$$Y^{\pm}(\ell) \equiv \left\langle |\Delta \boldsymbol{z}^{\pm}|^2 \Delta z_{\parallel}^{\mp} \right\rangle = -\frac{4}{3} \, \varepsilon^{\pm} \, \ell$$

Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations, excepted that one of the Elsässer variables z^{\pm} is transported by the other z^{\mp}

$$Y^{\pm}(\ell) \equiv \left\langle |\Delta \boldsymbol{z}^{\pm}|^2 \Delta z_{\parallel}^{\mp} \right\rangle = -\frac{4}{3} \, \varepsilon^{\pm} \, \ell$$

which in terms of velocity $oldsymbol{u}$ and magnetic field $oldsymbol{b}$ reads

$$\left\langle \left[|\Delta \boldsymbol{u}|^2 + |\Delta \boldsymbol{b}|^2 \pm 2\,\Delta \boldsymbol{u} \cdot \Delta \boldsymbol{b} \right] \left(\Delta u_{\parallel} \mp \Delta b_{\parallel} \right) \right\rangle = -\frac{4}{3}\,\varepsilon^{\pm}\,\ell$$

coupling energy $|\boldsymbol{u}|^2 + |\boldsymbol{b}|^2$ and cross-helicity $\boldsymbol{u} \cdot \boldsymbol{b}$ cascades

Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations, excepted that one of the Elsässer variables z^{\pm} is transported by the other z^{\mp}

$$Y^{\pm}(\ell) \equiv \left\langle |\Delta \boldsymbol{z}^{\pm}|^2 \Delta z_{\parallel}^{\mp} \right\rangle = -\frac{4}{3} \, \varepsilon^{\pm} \, \ell$$

which in terms of velocity $oldsymbol{u}$ and magnetic field $oldsymbol{b}$ reads

$$\left\langle \left[|\Delta \boldsymbol{u}|^2 + |\Delta \boldsymbol{b}|^2 \pm 2\,\Delta \boldsymbol{u} \cdot \Delta \boldsymbol{b} \right] \left(\Delta u_{\parallel} \mp \Delta b_{\parallel} \right) \right\rangle = -\frac{4}{3}\,\varepsilon^{\pm}\,\ell$$

coupling energy $|m{u}|^2+|m{b}|^2$ and cross-helicity $m{u}\cdotm{b}$ cascades

Does it hold in the solar wind ???

Verification in the Ulysses data

The Ulysses mission first north polar pass during the year 1996 at solar minimum

The solar wind as seen by Ulysses

High-latitude $\theta > 35^{\circ}$ fast |u| > 700 km/spolar solar wind near solar minimum 1995 - 1996

The solar wind as seen by Ulysses

High-latitude $\theta > 35^{\circ}$ fast |u| > 700 km/spolar solar wind near solar minimum 1995 - 1996

Use 8-min average data of ρ , \boldsymbol{u} and \boldsymbol{b} to build the Elsässer variables \boldsymbol{z}^{\pm}

Data processing

• Reconstruction of the spatial (radial) dependence using the Taylor's frozen-flow method

$$\begin{aligned} \boldsymbol{u}(\boldsymbol{x}, t+\tau) &\approx \boldsymbol{u}(\boldsymbol{x} - \overline{\boldsymbol{u}} \tau, t) \\ \boldsymbol{z}^{\pm}(\boldsymbol{x}, t+\tau) - \boldsymbol{z}^{\pm}(\boldsymbol{x}, t) &\approx \boldsymbol{z}^{\pm}(\boldsymbol{x} - \overline{\boldsymbol{u}_r} \tau \mathbf{1}_R, t) - \boldsymbol{z}^{\pm}(\boldsymbol{x}, t) \\ &\approx \Delta \boldsymbol{z}^{\pm}(-\overline{\boldsymbol{u}_r} \tau \mathbf{1}_R, t) \end{aligned}$$

Data processing

• Reconstruction of the spatial (radial) dependence using the Taylor's frozen-flow method

$$\begin{aligned} \boldsymbol{u}(\boldsymbol{x},t+\tau) &\approx \boldsymbol{u}(\boldsymbol{x}-\overline{\boldsymbol{u}}\,\tau,t) \\ \boldsymbol{z}^{\pm}(\boldsymbol{x},t+\tau) - \boldsymbol{z}^{\pm}(\boldsymbol{x},t) &\approx \boldsymbol{z}^{\pm}(\boldsymbol{x}-\overline{\boldsymbol{u}_{r}}\,\tau\,\boldsymbol{1}_{R},t) - \boldsymbol{z}^{\pm}(\boldsymbol{x},t) \\ &\approx \Delta \boldsymbol{z}^{\pm}(-\overline{\boldsymbol{u}_{r}}\,\tau\,\boldsymbol{1}_{R},t) \end{aligned}$$

• Use 11-days (\approx 2000 data points) time-average moving window to build up statistical averages on stationary data sets, and avoid radial and latitudinal variations

First direct evidence of an MHD turbulent energy cascade in the solar wind

Measurements of the cascade rate

First measurements of the energy transfer rates $\varepsilon^{\pm} \approx 200 \, \mathrm{J} \, \mathrm{s}^{-1} \, \mathrm{kg}^{-1}$

Effect of compressibility

• Incompressibility is not always satisfied in the solar wind $v/c_{\rm s} \approx v/c_{\rm A} \approx 5-10 \Rightarrow \rho \neq {\rm const}$

Effect of compressibility

• Incompressibility is not always satisfied in the solar wind $v/c_{\rm s} \approx v/c_{\rm A} \approx 5-10 \Rightarrow \rho \neq {\rm const}$

 \Rightarrow the dissipation per unit volume $\varepsilon_V \equiv \rho \varepsilon = \rho u^3/\ell$ should be statistically constant rather than the dissipation per unit mass ε

Effect of compressibility

• Incompressibility is not always satisfied in the solar wind $v/c_{\rm s} \approx v/c_{\rm A} \approx 5-10 \Rightarrow \rho \neq {\rm const}$

 \Rightarrow the dissipation per unit volume $\varepsilon_V \equiv \rho \varepsilon = \rho u^3/\ell$ should be statistically constant rather than the dissipation per unit mass ε

⇒ Check for a Yaglom-type law using density-weighted Elsässer fields

$$oldsymbol{w}^{\pm} \equiv
ho^{1/3} \, oldsymbol{z}^{\pm}$$

and weighted flux $W^{\pm}(\ell) \equiv rac{\left\langle |\Delta oldsymbol{w}^{\pm}|^2 \Delta w_{\parallel}^{\mp}
ight
angle}{\langle
ho
angle} \propto -rac{4}{3} \, arepsilon^{\pm} \, \ell$

Compressible scaling

Solar wind heating

Solar wind radial temperature profile T(R)decreases as a power law $T(R) \sim R^{-\xi}$ $\xi \approx 0.7 - 1.0$ but slower than adiabatic spherical cooling $T(R) \sim R^{-4/3}$

Solar wind heating

Solar wind radial temperature profile T(R)decreases as a power law $T(R) \sim R^{-\xi}$ $\xi \approx 0.7 - 1.0$ but slower than adiabatic spherical cooling $T(R) \sim R^{-4/3}$ \Rightarrow Necessity of in-situ heating ... Turbulence ?

Solar wind heating

Solar wind radial temperature profile T(R)decreases as a power law $T(R) \sim R^{-\xi}$ $\xi \approx 0.7 - 1.0$ but slower than adiabatic spherical cooling $T(R) \sim R^{-4/3}$ \Rightarrow Necessity of in-situ heating ... Turbulence ?

Measurements in the ecliptic

The dissipation rate ε depends on the type (fast/slow) of solar wind and is much higher for slow wind in the ecliptic

• The solar wind is a real turbulent magneto-hydrodynamic plasma

- The solar wind is a **real** turbulent magneto-hydrodynamic plasma
- Yaglom's law can be observed and is verified in turbulent MHD plasmas

- The solar wind is a real turbulent magneto-hydrodynamic plasma
- Yaglom's law can be observed and is verified in turbulent MHD plasmas
- The cascade transfer and dissipation rates ε^{\pm} can be estimated even without access to the dissipation scales of the flow

- The solar wind is a real turbulent magneto-hydrodynamic plasma
- Yaglom's law can be observed and is verified in turbulent MHD plasmas
- The cascade transfer and dissipation rates ε^{\pm} can be estimated even without access to the dissipation scales of the flow
- Effects of compressibility are important

- The solar wind is a real turbulent magneto-hydrodynamic plasma
- Yaglom's law can be observed and is verified in turbulent MHD plasmas
- The cascade transfer and dissipation rates ε^{\pm} can be estimated even without access to the dissipation scales of the flow
- Effects of compressibility are important
- Turbulence can account for (some of) the heating during the solar wind expansion

- The solar wind is a real turbulent magneto-hydrodynamic plasma
- Yaglom's law can be observed and is verified in turbulent MHD plasmas
- The cascade transfer and dissipation rates ε^{\pm} can be estimated even without access to the dissipation scales of the flow
- Effects of compressibility are important
- Turbulence can account for (some of) the heating during the solar wind expansion

Thanks to everybody, especially to the organizers ...

- The solar wind is a real turbulent magneto-hydrodynamic plasma
- Yaglom's law can be observed and is verified in turbulent MHD plasmas
- The cascade transfer and dissipation rates ε^{\pm} can be estimated even without access to the dissipation scales of the flow
- Effects of compressibility are important
- Turbulence can account for (some of) the heating during the solar wind expansion

Thanks to everybody, especially to the organizers ...

and to Fabien !!!

Alain Arneodo † 2019

Fabien @ Cargèse 2007

