

Velocity/multi-scalar measurements in turbulent co-axial jets

Alaïs Hewes and Laurent Mydlarski

Department of Mechanical Engineering, McGill University Canada

July 11th, 2019

Funding Provided by

Background and Motivation

- Scalar mixing in turbulent flows plays an important role in many applications, both industrial and environmental:
 - Heat transfer, combustion, environmental pollution dispersion, atmospheric & oceanic sciences

- However, most scalar mixing studies have focused on the mixing of a single scalar
 - There has comparatively been relatively little work on multiscalar mixing

Background and Motivation (cont.)

Nevertheless, there have been some studies of multi-scalar mixing:

	Experimental	Computational
Homogenous, Isotropic Turbulence	 Warhaft (1981) Sirivat and Warhaft (1982) Warhaft (1984) 	 Juneja and Pope (1996) Vrieling and Nieuwstadt (2003) Viswanathan and Pope (2008)
Jets	 Tong and Warhaft (1995) Cai et al. (2011) Soltys and Crimaldi (2015) Li et al. (2017) 	Rowinski and Pope (2013)
Channel Flow	Costa-Patry and Mydlarski (2008)	Oskouie et al. (2015)
Boundary Layers	Sawford et al. (1985)Davies et al. (2000)	
Mixing Layers		 Cha et al. (2006) Sawford (2006) Sawford and de Bruyn Kops (2008) Meyer and Deb (2012)

Objectives: short, medium and longer term

- To develop a measurement technique capable of simultaneously measuring of two scalars and velocity in turbulent flows at high temporal and spatial resolution
- To (experimentally) study the evolution of two distinct scalars (temperature and helium) in a turbulent coaxial jet
 Inspired by the experiment of Cai et al., J. Fluid Mech. (2011)
- To provide data for the testing of mixing models with the aim of (hopefully) validating and/or further improving them for use in multi-scalar mixing applications, similar to what has been undertaken by Cai et al., J. Fluid Mech. (2011) and Rowinski and Pope, Phys. Fluids (2013)

3-Wire Thermal Anemometry Probe for Simultaneous Measurements of U, C and T

- 3-wire probe consists of:
 - Two hot-wires to measure the velocity and concentration ("Interference" or "Way-Libby" probe)
 - Wires are placed close together (5-15 μm)
 - One cold wire (not shown) to measure the temperature (insensitive to velocity and concentration)

Interference probe to simultaneously measure velocity and concentration₆

Interference Probe for Isothermal Case

 Concentration determined from a function of both wire voltages:

$$\mathbf{C} = f(E_{up}^2, E_{down}^2)$$

 Upstream wire follows King's Law:

$$U = \left[\frac{E_{up}^2 - A(C)}{B(C)}\right]^{1/n}$$

Cold-Wire Thermometer

- Temperature is linearly related to the voltage drop across the sensor: $T = A_t + B_t V$
- Low sensitivity to the fluctuating velocity and He concentration

Interference Probe: Extension to Non-Isothermal Case

- Black: 0% He mass fraction
- Blue: 2% He mass fraction
- Red: 4% He mass fraction
- Green: 6% He mass fraction

Validation of Interference Probe

Results: Downstream Evolution of Centerline Statistics

Results: Radial Profiles

Results: Mixed Statistics → **Correlation Coefficients**

🐯 McGill

Results: Downstream Evolution of JPDFs of ϕ_1 and ϕ_2

Results: Conditional Expectations

🐯 McGill

Conclusions & Future Work

- Developed 3-wire, thermal-anemometry-based probe capable of simultaneously measuring 2 scalars and velocity in a turbulent flow
- Made measurements of velocity and 2 scalars in a coaxial jet with a co-flow
- Future work will involve:
 - Pursuing additional noise reduction techniques
 - Furthering the understanding both the physics and modelling of multi-scalar mixing by way of simultaneous U, C & T measurements

Questions?