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Background and Motivation

* Scalar mixing in turbulent flows
plays an important role in many
applications, both industrial and
environmental:

— Heat transfer, combustion,
environmental pollution dispersion,
atmospheric & oceanic sciences

 However, most scalar mixing studies have focused on
the mixing of a single scalar

— There has comparatively been relatively little work on multi-
scalar mixing
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Background and Motivation (cont.)

 Nevertheless, there have been some studies of multi-scalar
mixing:

Experimental Computational
Homogenous, « Warhaft (1981) » Juneja and Pope (1996)
Isotropic « Sirivat and Warhaft (1982) * Vrieling and Nieuwstadt (2003)
Turbulence « Warhaft (1984) + Viswanathan and Pope (2008)
« Tong and Warhaft (1995) + Rowinski and Pope (2013)

« Caietal (2011)
+ Soltys and Crimaldi (2015)
« Lietal. (2017)

Jets

» Costa-Patry and Mydlarski (2008) » Oskouie et al. (2015)
Channel Flow

» Sawford et al. (1985)

Boundary Layers | | o o et al. (2000)

* Cha et al. (2006)

N » Sawford (2006)

Mixing Layers « Sawford and de Bruyn Kops (2008)
* Meyer and Deb (2012)
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Objectives: short, medium and longer term

 To develop a measurement technique capable of
simultaneously measuring of two scalars and velocity in
turbulent flows at high temporal and spatial resolution

* To (experimentally) study the evolution of two distinct
scalars (temperature and helium) in a turbulent coaxial jet

— Inspired by the experiment of Cai et al., J. Fluid Mech. (2011)

* To provide data for the testing of mixing models with the
aim of (hopefully) validating and/or further improving
them for use in multi-scalar mixing applications, similar to
what has been undertaken by Cai et al., J. Fluid Mech.
(2011) and Rowinski and Pope, Phys. Fluids (2013)
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Experimental Apparatus

Vertically oriented coaxial jet
emanating into a co-flow of heated
air (based on the experimental set-
up of Cai et al. J. Fluid Mech., 2011)
* 1t (central) jet:
- fully developed flow

- mixture of helium (4% by mass)
and air (96% by mass)

« 2" (annular) jet:
- fully developed flow
- pure (unheated) air
« 3 co-flow:

_ approximately uniform flow Heated air S

- heated air (AT = 6.0 °C) p, =1

1t jet 2" jet 3" jet

U at jet 12.6 m/s | 11.3m/s | 0.4m/s

Re, 3900 2300 3600

D, 0.622cm | 0.318cm | 13.34cm

f

f

[

“— Pure air

(p3 = 1)

THeIium/air mixture
o1 =1 )
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3-Wire Thermal Anemometry Probe for Simultaneous
Measurementsof U, Cand T

e 3-wire probe consists of:

— Two hot-wires to measure
the velocity and
concentration
(“Interference” or “Way-
Libby” probe)

* Wires are placed close
together (5-15 um)

— One cold wire (not shown)
to measure the temperature
(insensitive to velocity and
concentration)

Interference probe to simultaneously
measure velocity and concentration,
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Concentration
determined from a
function of both wire
voltages:

C= f(E‘LZLp' Eczlown)

Upstream wire follows
King’s Law:

[EZ, - A"
U‘[ B(C)
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Cold-Wire Thermometer

Temperature vs. Cold-Wire Voltage

36
* Temperature is + 2% Linmasstraciar
linearly related to A | s et ey
the voltage drop 5
across the sensor: 332}
T = A, + B,V =
ﬂg'SU -
&
* Low sensitivity to
the fluctuating 81
velocity and He
concentration e - : : ’ :

Voltage (V)
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Interference Probe: Extension to Non-Isothermal Case
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Validation of Interference Probe

Concentration Spectra

10°®
Velocity Spectra in Pure Air
102 il - 108
)
=100
m
10-12
—He/Air Mixture
14 —Pure Air ’
107 '
10° 10 104
Frequency [1/s]
Concentration PDF
400 ‘ ‘ : :
—Pure Air
— | nterference Probe ” —He/Air Mixture
= Single-Normal Hot-Wire Probe 300 ¢
10°10 : ; ;
10° 10" 102 10° 10 O
Frequency [1/s] - 260
100 ¢
0 I I '
10 -0.01 0 0.01 0.02 0.03 0.04

He mass fraction



T McGill

Results: Downstream Evolution of Centerline Statistics

Ujl(U) vs. x/d,
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Results: Radial Profiles

U/U, vs. rld, (¢,) vs. rld,
1 ‘ ‘ 0.8 i ‘
+x/di=3.2 +X/di=3'2
0.8 —v-x/d.=6.4 5l —v-X/d=6.4
008 -
2 < 0.4
S 04 o
0.2} 0.2
% 0.5 | 15 0 | ‘ ' )
d 0 0.5 1 1.5 0 05 1 15
i r/di rid,
; urms(U) VS. |"Idi o ersl(q& 4) vs. rld, ¢2,rmsl<¢2> vs. rldi
.5 1 : : 15 ‘ ‘
+X/di=3,2
0.4 +X/di:6.4
] < 06 <
~,0.3 = <
E E E
> wa| s < 0.5,
+X/di—3.2 53] e xid=3.2]
o1 il Bl | —v-x/d=6.4
. L L O . . 0 . L
0 0.5 1 1.5 0 0.5 1 15 0 0.5 1 1.5

I'/di r/d. r/d



T McGill

Results: Mixed Statistics = Correlation Coefficients
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Results: Downstream Evolution of JPDFs of ¢, and ¢,
¢,9, JPDF x/d.=6.4
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Results: Conditional Expectations
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Results: Centerline Conditional Dissipations

0 02 04 06 08 1

2

0 02 04 06 08 1
Cb'l

1.8
1.7
1.2
1.3
1.2

0.8
0.7
0.5

(9 10%)%|,,b,) at xId =6.4

1

0 L ALV ),
0 02 04 06 08 1

". ' N

¢1
2 —
§(3¢2/3X) |¢1,¢2) at x/d.=6.4
S |
0.8
0.6 9%
(9]
0.4
0.2

N,
JL8
4

0 02 04 06 O 1

?1

1.8
1.6
1.4
1.2
0.9
0.7
0.5
0.3
0.1

0 L .
0 02 04 06 08
¢1

0 02 04 06 08
¢1

1

((9¢10%)?16,,,) at x/d=20.1

(9,1 0%)?16,,b,) at x/d.=20.1

16

1.8
1.6
1.4
1.2
0.9
0.7
0.5
0.3
0.1

1.8
1.7
1.8
1o
1.2

0.8
0.7
0.5



T McGill

Conclusions & Future Work

* Developed 3-wire, thermal-anemometry-based
probe capable of simultaneously measuring 2
scalars and velocity in a turbulent flow

* Made measurements of velocity and 2 scalars in a
coaxial jet with a co-flow

e Future work will involve:
— Pursuing additional noise reduction techniques

— Furthering the understanding both the physics and
modelling of multi-scalar mixing by way of
simultaneous U, C & T measurements
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Questions?
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