Arnaud MURA
(arnaud.mura@ensma.fr)
Institut P', UPR3346 du CNRS
ISAE-ENSMA et Université de Poitiers

Turbulence-scalar interactions in flows

 featuring significant density variations From premixed flames to compressible or multiphase flowsArnaud MURA
(arnaud.mura@ensma.fr)
Institut P', UPR3346 du CNRS
ISAE-ENSMA et Université de Poitiers

1. Context: scalar mixing and variable density fluid turbulence, scalar dissipation rate, turbulence scalar interaction, scalar gradient orientation, velocity gradient invariants, etc.
2. Analysis: passive scalar in homogeneous turbulence interacting with a planar shock wave, vaporizing two-phase flows in homogeneous isotropic turbulence, fully premixed flame kernel development in homogeneous isotropic turbulence
3. Discussion, comments, questions

Scalar mixing and variable density turbulence

Seminal papers with some of them focused on the link between fluctuations of a passive scalar and its dissipation rate (see below), an important problem for turbulent flow modelling both with and without chemical reactions
F. Anselmet, R.A. Antonia, Joint statistics between temperature and its dissipation in a turbulent jet, The Physics of Fluids, vol. 28, pp. 1048-1054 (1985)
F. Anselmet, H. Djeridi, L. Fulachier, Joint statistics of a passive scalar and its dissipation in turbulent flows, Journal of Fluid Mechanics, vol. 280(10), pp. 173-197 (1994)
J. Mi, R.A. Antonia, F. Anselmet, Joint statistics between temperature and its dissipation rate components in a round Physics of Fluids, vol. 7(7), pp. 1665-1673 (1995)

Some among the various contributions of Fabien in this field of research

Scalar mixing and variable density turbulence

Seminal papers with some of them focused on the link between fluctuations of a passive scalar and its dissipation rate (see below), an important problem for turbulent flow modelling both with and without chemical reactions
... and a reference book in the field

```
FLID MECHANICS AND ITS ApPUCATIONS
```

P. Chassaing. R.A. Antonia, E. Anselmet.
I. Joly and S. Sarkar

Variable Density
Fluid Turbulence

XUWER ACADEMIC PUBUSHERS
F. Anselmet, R.A. Antonia, Joint statistics between temperature and its dissipation in a turbulent jet, The Physics of Fluids, vol. 28, pp. 1048-1054 (1985)
F. Anselmet, H. Djeridi, L. Fulachier, Joint statistics of a passive scalar and its dissipation in turbulent flows, Journal of Fluid Mechanics, vol. 280(10), pp. 173-197 (1994)
J. Mi, R.A. Antonia, F. Anselmet, Joint statistics between temperature and its dissipation rate components in a round Physics of Fluids, vol. 7(7), pp. 1665-1673 (1995)

1- Scalar mixing and variable density turbulence
Small-scale scalar mixing : the scalar dissipation rate (SDR)

$$
N_{\xi}=D \frac{\partial \xi}{\partial x_{k}} \frac{\partial \xi}{\partial x_{k}} \quad \text { product of the diffusivity and squared scalar gradient }
$$

- positive-defined quantity
- measures the (local) mixing rate
- related to a characteristic mixing time (mixing frequency)

Its transport equation reads

$$
\begin{aligned}
\mathrm{L}\left(\rho N_{\xi}\right) & =\rho \frac{D N_{\xi}}{D t}-\frac{\partial}{\partial x_{k}}\left(\rho D \frac{\partial N_{\xi}}{\partial x_{k}}\right) \\
\mathrm{L}\left(\overline{\rho N_{\xi}}\right) & =\frac{\partial}{\partial t}\left(\overline{\rho N_{\xi}}\right)+\frac{\partial}{\partial x_{k}}\left(\overline{\rho u_{k} N_{\xi}}\right)-\frac{\partial}{\partial x_{k}}\left(\overline{\rho D \frac{\partial N_{\xi}}{\partial x_{k}}}\right) \\
& =\mathrm{TSI}+2 \rho D^{2} \frac{\partial^{2} \xi}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} \xi}{\partial x_{i} \partial x_{j}}
\end{aligned}+\mathrm{OT}
$$

with OT for others terms (including reaction, vaporization, etc.)
Turbulence-scalar interaction (TSI): one of the leading-order term
TSI $=-2 \overline{\rho D \frac{\partial \xi}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \xi}{\partial x_{j}}}$ SDR tensor $D \frac{\partial \xi}{\partial x_{i}} \frac{\partial \xi}{\partial x_{j}}$ and velocity gradient tensor (VGT) $\frac{\partial u_{i}}{\partial x_{j}}$

1- Scalar mixing and variable density turbulence
Turbulence-scalar interaction (TSI)

$$
\mathrm{TSI}=-2 \overline{\rho D \frac{\partial \xi}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \xi}{\partial x_{j}}}
$$

The velocity gradient tensor (VGT)

$$
A_{i j}=\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}+W_{i j}
$$

Characteristic equation of the velocity gradient tensor (or traceless counterpart \boldsymbol{A}^{*})

$$
\lambda^{3}+P_{A} \lambda^{2}+Q_{A} \lambda+R_{A}=0
$$

with the three invariants P_{A}, Q_{A}, and R_{A} defined by the following expressions

$$
\begin{aligned}
& P_{A}=-S_{i i} \\
& Q_{A}=\frac{1}{2}\left(P_{A}-S_{i j} S_{j i}-W_{i j} W_{j i}\right) \\
& R_{A}=\frac{1}{3}\left(-P_{A}^{3}+3 P_{A} Q_{A}-S_{i j} S_{j k} S_{k i}-W_{i j} W_{j k} W_{k i}\right)
\end{aligned}
$$

1- Scalar mixing and variable density turbulence
Turbulence-scalar interaction (TSI)

$$
\mathrm{TSI}=-2 \overline{\rho D \frac{\partial \xi}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \xi}{\partial x_{j}}}
$$

The velocity gradient tensor

$$
A_{i j}=\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}+W_{i j}
$$

Anti-symmetric (skew-symmetric) part $W_{i j}$: modifies the orientation of the scalar gradient but not (at least directly) the norm of the scalar gradient (dissipation rate) $-2 \rho D \frac{\partial \xi}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \xi}{\partial x_{j}}=-2 \rho D \frac{\partial \xi}{\partial x_{i}} S_{i j} \frac{\partial \xi}{\partial x_{j}}=-2 \rho N_{\xi}\left(\boldsymbol{n}_{\xi}^{T} \cdot S \cdot \boldsymbol{n}_{\xi}\right)$ with $\boldsymbol{n}_{\xi}=\boldsymbol{\nabla} \xi /\|\boldsymbol{\nabla} \xi\|$

Symmetric part $S_{i j}$: can be made diagonal (eigenvalues λ_{i} and eigenvectors \boldsymbol{e}_{i})
Once written in the strain-rate tensor eigen-frame

$$
\mathrm{TSI}=-2 \rho N_{\xi} \sum_{i=1}^{i=3} \lambda_{i} \cos ^{2}\left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{i}\right)
$$

1- Scalar mixing and variable density turbulence
Scalar dissipation rate (SDR)

$$
N_{\xi}=D \frac{\partial \xi}{\partial x_{k}} \frac{\partial \xi}{\partial x_{k}}
$$

Turbulence-scalar interaction (TSI)

$$
\mathrm{TSI}=-2 \rho D \frac{\partial \xi}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \xi}{\partial x_{j}}
$$

Velocity gradient tensor

$$
A_{i j}=\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}+W_{i j}
$$

Scalar gradient orientation in the strain-rate tensor eigen-frame

$$
\hat{n}_{i}=\boldsymbol{n}_{\xi} \cdot \boldsymbol{e}_{i}=\cos \left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{i}\right)=\boldsymbol{R}^{T} \cdot \boldsymbol{n}_{\xi} \quad \text { avec } \quad \boldsymbol{R}=\left[\boldsymbol{e}_{1}\left|\boldsymbol{e}_{2}\right| \boldsymbol{e}_{3}\right]
$$

Scalar dissipation rate (SDR)

$$
N_{\xi}=D \frac{\partial \xi}{\partial x_{k}} \frac{\partial \xi}{\partial x_{k}}
$$

Turbulence-scalar interaction (TSI)

$$
\mathrm{TSI}=-2 \rho D \frac{\partial \xi}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \xi}{\partial x_{j}}
$$

Velocity gradient tensor

$$
A_{i j}=\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}+W_{i j}
$$

Scalar gradient orientation in the strain-rate tensor eigen-frame

$$
\hat{n}_{i}=\boldsymbol{n}_{\xi} \cdot \boldsymbol{e}_{i}=\cos \left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{i}\right)=\boldsymbol{R}^{T} \cdot \boldsymbol{n}_{\xi} \quad \text { avec } \quad \boldsymbol{R}=\left[\boldsymbol{e}_{1}\left|\boldsymbol{e}_{2}\right| \boldsymbol{e}_{3}\right]
$$

2- Flame kernel development in homogeneous turbulence

Weakly turbulent premixed flame databases

Case F1, $t^{*}=t S_{L}^{0} / \delta_{L}^{0}=2.0$

Case F2, $t^{*}=t S_{L}^{0} / \delta_{L}^{0}=3.0$

Simulation	l_{t} / δ_{L}^{0}	$u_{R M S} / S_{L}^{0}$	$D a$	$K a$	N_{B}
F1	33	0.7	55	0.11	1.65
F2	22	1.4	15	0.37	0.83

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence

Weakly turbulent premixed flame databases

$$
\begin{gathered}
\text { Case F1, } t^{*}=t S_{L}^{0} / \delta_{L}^{0}=2.0 \\
\text { Case F2, } t^{*}=t S_{L}^{0} / \delta_{L}^{0}=3.0 \\
\text { of turbulent premixed combustion }
\end{gathered}
$$

Simulation	l_{t} / δ_{L}^{0}	$u_{R M S} / S_{L}^{0}$	$D a$	$K a$	N_{B}
F1	33	0.7	55	0.11	1.65
F2	22	1.4	15	0.37	0.83

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence
Field of the averaged progress variable together with three instantaneous progress variable iso-lines issued from a cut-plane of the computational domain

2- Flame kernel development in homogeneous turbulence
Field of the averaged progress variable together with three instantaneous progress variable iso-lines issued from a cut-plane of the computational domain

A. Mura, F. Galzin, R. Borghi, A unified PDF-flamelet model for turbulent premixed combustion, Combustion Science and Technology, vol. 175, pp. 1573-1609 (2003)

2- Flame kernel development in homogeneous turbulence
Field of the averaged progress variable together with three instantaneous progress variable iso-lines issued from a cut-plane of the computational domain

A. Mura, F. Galzin, R. Borghi, A unified PDF-flamelet model for turbulent premixed combustion, Combustion Science and Technology, vol. 175, pp. 1573-1609 (2003)
K.Q.N. Kha, V. Robin, A. Mura, M. Champion, Implications of laminar flame finite thickness on the structure of turbulent premixed flames, Journal of Fluid Mechanics, vol. 787, pp. 116-147 (2016)

Reynolds stress anisotropy for increasing values of the mean progress variable

From 3D isotropic turbulence (fresh reactants) towards one-component turbulence (burned products)
S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence

Weakly turbulent premixed flame databases

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence

Weakly turbulent premixed flame databases

$R^{*} /\left\langle\omega^{2}\right\rangle^{3 / 2}$

$R^{*} /\left\langle\omega^{2}\right\rangle^{3 / 2}$
S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence

Weakly turbulent premixed flame databases

$R^{*} /\left\langle\omega^{2}\right\rangle^{3 / 2}$

VGT across a one-dimensional flame: $A=\left[\begin{array}{ccc}E_{f} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ with $E_{f}=\tau S_{L}^{0} / \delta_{L}^{0}$
Traceless VGT:: $A^{*}=\left[\begin{array}{ccc}2 E_{f} / 3 & 0 & 0 \\ 0 & -E_{f} / 3 & 0 \\ 0 & 0 & -E_{f} / 3\end{array}\right]$
which verifies the left branch of the zero discriminant

$R^{*} /\left\langle\omega^{2}\right\rangle^{3 / 2}$

$R^{*}\left(\tau_{L}^{0}\right)^{3}$

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence
Evolution of the reactive scalar gradient orientation vector

$$
\widehat{\boldsymbol{n}}=\left(\begin{array}{l}
\hat{n}_{1} \\
\hat{n}_{2} \\
\hat{n}_{3}
\end{array}\right)=\left(\begin{array}{l}
\boldsymbol{n}_{c} \cdot \boldsymbol{e}_{1} \\
\boldsymbol{n}_{c} \cdot \boldsymbol{e}_{2} \\
\boldsymbol{n}_{c} \cdot \boldsymbol{e}_{3}
\end{array}\right)=\left(\begin{array}{c}
\cos \left(\boldsymbol{n}_{c}, \boldsymbol{e}_{1}\right) \\
\cos \left(\boldsymbol{n}_{c}, \boldsymbol{e}_{2}\right) \\
\cos \left(\boldsymbol{n}_{c}, \boldsymbol{e}_{3}\right)
\end{array}\right)=\boldsymbol{R}^{T} \cdot \boldsymbol{n}_{c} \quad \boldsymbol{n}_{\boldsymbol{c}}=\boldsymbol{\nabla} c /\|\boldsymbol{\nabla} c\|
$$

with $c \in[0 ; 1]$ a progress variable (normalized temperature or mass fraction)

2- Flame kernel development in homogeneous turbulence

Evolution of the reactive scalar gradient orientation vector

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence
Evolution of the reactive scalar gradient orientation vector

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence

Evolution of the reactive scalar gradient orientation vector

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence

Evolution of the reactive scalar gradient orientation vector

S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence
Evolution of the reactive scalar gradient orientation vector

A. Mura, K. Tsuboi, T. Hasegawa, Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data, Combustion Theory and Modelling, vol. 12, pp. 671-698 (2008)

2- Flame kernel development in homogeneous turbulence
Evolution of the reactive scalar gradient orientation vector

$$
\widehat{\boldsymbol{n}}=\left(\begin{array}{l}
\hat{n}_{1} \\
\hat{n}_{2} \\
\hat{n}_{3}
\end{array}\right)=\left(\begin{array}{l}
\boldsymbol{n}_{c} \cdot \boldsymbol{e}_{1} \\
\boldsymbol{n}_{c} \cdot \boldsymbol{e}_{2} \\
\boldsymbol{n}_{c} \cdot \boldsymbol{e}_{3}
\end{array}\right)=\left(\begin{array}{c}
\cos \left(\boldsymbol{n}_{c}, \boldsymbol{e}_{1}\right) \\
\cos \left(\boldsymbol{n}_{c}, \boldsymbol{e}_{2}\right) \\
\cos \left(\boldsymbol{n}_{c}, \boldsymbol{e}_{3}\right)
\end{array}\right)=\boldsymbol{R}^{T} \cdot \boldsymbol{n}_{c} \quad \boldsymbol{n}_{\boldsymbol{c}}=\boldsymbol{\nabla} c /\|\boldsymbol{\nabla} c\|
$$

with $c \in[0 ; 1]$ a progress variable (normalized temperature or mass fraction)
Lagrangian evolution of the orientation vector: $\frac{D \widehat{n}}{D t}=\mathbf{G R}+\mathbf{T S}+\mathbf{T W}+\mathbf{W N}$
GR: reactive scalar transport
TS: direct effect of strain rate
TW: vorticity effects
WN: rotation of the eigenframe

$$
\mathrm{TSI}=-2 \mathrm{~N}_{c}\left(\boldsymbol{n}_{c}^{T} \cdot \boldsymbol{S} \cdot \boldsymbol{n}_{c}\right)=-2 \mathrm{~N}_{c} \sum_{i=1}^{i=3} \lambda_{i} \widehat{\boldsymbol{n}}_{i}^{2} \quad \text { where } \quad N_{c}=D \frac{\partial c}{\partial x_{i}} \frac{\partial c}{\partial x_{i}}
$$

K.K. Nomura, G.K. Post, The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence, Journal of Fluid Mechanics, vol. 377, 65-97 (1998)
S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Flame kernel development in homogeneous turbulence
Unsteady (Lagrangian) evolution of the direction of the most extensive strain-rate eigenvector at one location (minimum value)

M. Gonzalez, P. Parathoën, Effects of variable mass density on the kinematics of scalar gradient, Physics of Fluids, vol. 23 pp. 075107 (2011)
S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

Evolution of the scalar gradient orientation vector
Evolution is piloted by the term WN, i.e., rotation of the eigen-frame, $\mathbf{W N}=\frac{D \boldsymbol{R}^{T}}{D t} \cdot \boldsymbol{n}_{c}=\frac{D \boldsymbol{R}^{T}}{D t} \cdot \boldsymbol{R} \cdot \widehat{\boldsymbol{n}}=\boldsymbol{\mathcal { W }} \cdot \widehat{\boldsymbol{n}}$ with \mathcal{W} the rate of rotation of the principal axes of the strain-rate tensor S

WN contains the terms that influence the velocity gradient but written in the the eigen-vector basis, e.g., the pressure Hessian $\Pi=\boldsymbol{\nabla}(\nabla p)$ written in the following form: $\boldsymbol{R}^{\boldsymbol{T}} \cdot \Pi \cdot \boldsymbol{R}$

A detailed inspection shows that the leading contribution is related to this pressure Hessian term

Non-localness, no scaling law available from the laminar premixed flame of reference, ...
not good news for modellers
S. Zhao, A. Er-raiy, Z. Bouali, A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, 198, 436-454 (2018)

2- Vaporizing two-phase flows in homogeneous isotropic turbulence
Direct numerical simulation solver ARCHER

- Spatial discretization

WENO5 for convective terms
Central finite difference (FD) for molecular terms

- Time discretization

Third-order low storage Runge-Kutta

- Two-phase flow description

Coupled level-set / volume of fluid (CLSVOF) method interface tracking Ghost-fluid method to handle jump conditions at the interface

Computational setup

- Two-phase flow in HIT
- Two values of the liquid volume fraction (5\% and 10\%)

2- Vaporizing two-phase flows in homogeneous isotropic turbulence
Orientations statistics of the scalar gradient in the strain-rate eigen-frame

Z. Bouali, B. Duret, F.X. Demoulin, A. Mura, DNS analysis of small-scale turbulence-scalar interactions in evaporating twophase flows, International Journal of Multiphase Flow, vol. 85, pp. 326-335 (2018)

2- Vaporizing two-phase flows in homogeneous isotropic turbulence
Orientations statistics of the scalar gradient in the strain-rate eigen-frame

Z. Bouali, B. Duret, F.X. Demoulin, A. Mura, DNS analysis of small-scale turbulence-scalar interactions in evaporating twophase flows, International Journal of Multiphase Flow, vol. 85, pp. 326-335 (2018)

2- Vaporizing two-phase flows in homogeneous isotropic turbulence
Orientations statistics of the scalar gradient in the strain-rate eigen-frame

Z. Bouali, B. Duret, F.X. Demoulin, A. Mura, DNS analysis of small-scale turbulence-scalar interactions in evaporating twophase flows, International Journal of Multiphase Flow, vol. 85, pp. 326-335 (2018)

2- Vaporizing two-phase flows in homogeneous isotropic turbulence

JPDF of the second and third invariants of the VGT

M. Onofre, S. Zhao, Z. Bouali, A. Mura, On some scalar and velocity statistics in two-phase flow turbulence with evaporation, Proceedings of the Eleventh Mediterranean Symposium on Combustion (2019)

JPDF of the second and third invariants of the VGT

M. Onofre, S. Zhao, Z. Bouali, A. Mura, On some scalar and velocity statistics in two-phase flow turbulence with evaporation, Proceedings of the Eleventh Mediterranean Symposium on Combustion (2019)

2- Vaporizing two-phase flows in homogeneous isotropic turbulence

JPDF of the second and third invariants of the VGT

(
M. Onofre, S. Zhao, Z. Bouali, A. Mura, On some scalar and velocity statistics in two-phase flow turbulence with evaporation, Proceedings of the Eleventh Mediterranean Symposium on Combustion (2019)

JPDF of the second and third invariants of the VGT

M. Onofre, S. Zhao, Z. Bouali, A. Mura, On some scalar and velocity statistics in two-phase flow turbulence with evaporation, Proceedings of the Eleventh Mediterranean Symposium on Combustion (2019)

JPDF of the second and third invariants of the VGT

This behaviour can be related to boundary layer or mass transfer effects in the vicinity of droplets
Similar results have been recently published by M.S. Dodd and L. Jofre in Physical Review Fluids last month ...

M. Onofre, S. Zhao, Z. Bouali, A. Mura, On some scalar and velocity statistics in two-phase flow turbulence with evaporation, Proceedings of the Eleventh Mediterranean Symposium on Combustion (2019)

2- Shock-turbulence interactions
CREAMS solver: Compressible REActive Multi-Species solver: cartesian, coupled to an immersed boundary method (IBM), compressible formulation, unsteady, 3D, multicomponent, massively parallel (MPI; 10,000 < N < 100,000 cores)
Coupled to the CVODE library: processing of stiff systems of ODE
Coupled to the EGlib library: detailed description of molecular transport
Spatial discretization scheme

- convective fluxes (non-viscous) combines a non-linear weighting procedure (WENO7) with high-precision finite difference scheme (extended Adams \& Shariff shock sensor)
- diffusive or viscous fluxes: high-precision finite difference scheme (CDS8)

Temporal discretization scheme TVD RK3 (non-reactive contribution) and CVODE (reactive contribution), Strang's « splitting »
P. N. Brown, G. D. Byrne and A. C. Hindmarsh, VODE, a variable-coefficient ODE solver, SIAM Journal on Scientific \& Statistical Computing, vol. 10, pp. 1038-1051 (1989)
A. Ern and V Giovangigli, Fast and accurate multicomponent transport property evaluation, Journal of Computational Physics, vol. 120, pp. 105-116 (1995)
N.A. Adams and K. Shariff, A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems,, Journal of Computational Physics, vol. 127, pp. 27-51(1996)
J.C. Strikwerda, Finite difference schemes and partial differential equations. Wadsworth, Belmont (1989)

2- Shock-turbulence interactions
CREAMS solver: Compressible REActive Multi-Species solver: cartesian, coupled to an immersed boundary method (IBM), compressible formulation, unsteady, 3D, multicomponent, massively parallel (MPI; 10,000 < N < 100,000 cores)
Coupled to the CVODE library: processing of stiff systems of ODE
Coupled to the EGlib library: detailed description of molecular transport
Spatial discretization scheme

- convective fluxes (non-viscous) combines a non-linear weighting procedure (WENO7) with high-precision finite difference scheme (extended Adams \& Shariff shock sensor)
- diffusive or viscous fluxes: high-precision finite difference scheme (CDS8)

Temporal discretization scheme TVD RK3 (non-reactive contribution) and CVODE (reactive contribution), Strang's «splitting »

Detailed verification procedure and application to various test-cases
P.J. Martinez Ferrer, R. Buttay, G. Lehnasch, A. Mura, A detailed verification procedure for compressible reactive multi-component NavierStokes solvers, Computers and Fluids, vol. 89, pp. 88-110 (2014)
P.J. Martinez Ferrer, G. Lehnasch, A. Mura, Compressibility and heat release effects in high-speed reactive mixing layers, Part I: Growth rates and turbulence characteristics, Combustion and Flame, vol. 180, pp. 284-303(2017)
R. Boukharfane, F. Ribeiro, Z. Bouali, A. Mura, A combined ghost-point-forcing / direct-forcing immersed boundary method (IBM) for compressible flow simulations, Computers and Fluids, vol. 62, pp. 91-11 (2018)

Configuration: interaction of homogeneous isotropic turbulence (HIT) with a planar shock-wave (initially)

Iso-value surface of the λ_{2} criterion coloured by the enstrophy, the shock-wave is visualized by an iso-value (<0) of the dilatation $(\boldsymbol{\nabla} \cdot \boldsymbol{u})$ coloured by pressure

2- Shock-turbulence interactions

Simulation conditions

Case	Re	$\operatorname{Re}_{\lambda}$	M_{S}	M_{t}
1-W/-SW ou 1-W/O-SW	2370	21	1.7	0.17
2-W/-SW ou 1-W/O-SW	2780	21	2.0	0.17
3-W/-SW ou 1-W/O-SW	3200	21	2.3	0.17

Meshes: $750 \times 256 \times 256, \mathrm{~N}=50,000,000$ computational nodes (inhomogeneous)
Initialisation and injection of scalar and velocity HIT

- i) Initialisation of density, temperature, and velocity fields with the method of Erlebacher and coworkers (1990)
- ii) Initialisation of density, pressure, and velocity fields with the method of Ristorcelli and Blaisdell (1997)
- Initialisation of a non-reactive scalar field (length-scale and PDF) using the method of Reveillon (2005)

2- Shock-turbulence interactions
Characteristics of shocked turbulence Lumley triangle

$$
\begin{gathered}
b_{i j}=\frac{\overline{\rho u_{i}^{\prime \prime} u_{j}^{\prime \prime}}}{2 \bar{\rho} \tilde{k}}-\delta_{i j} \\
\xi^{*}=-\frac{\Pi_{b}}{3}=\frac{b_{i i}^{2}}{6} ; \eta^{*}=\frac{b_{i i}^{3}}{6}
\end{gathered}
$$

Normalized invariants of the anisotropy tensor

R. Boukharfane, Z. Bouali, A. Mura, Scalar and velocity dynamics evolutions in planar shock-turbulence interaction, Shock Waves, vol. 28(6), pp. 1117-1141(2018)

Characteristics of shocked turbulence
Structure characterized by the velocity gradient tensor \boldsymbol{A}^{*} (traceless)

$$
\boldsymbol{A}^{*}=\boldsymbol{\nabla} \boldsymbol{u}^{T}-(\boldsymbol{\nabla} \cdot \boldsymbol{u}) \boldsymbol{I} / 3
$$

Characteristic decomposition of the turbulence (Perry and Chong)
Characteristic polynomial of \boldsymbol{A}^{*}

$$
\lambda^{3}+P_{A *} \lambda^{2}+Q_{A *} \lambda+R_{A *}=0
$$

$$
\text { Discriminant : } \Delta=\frac{27}{4} R_{A *}^{2}+Q_{A *}^{3}
$$

SFS : stable focus / stretching
UFC : unstable focus / compressing SNSS : stable node / saddle / saddle UNSS : unstable node / saddle / saddle
A.E. Perry, M.S. Chong, A description of eddying motions and flow patterns using critical-point concepts, Annual Review of Fluid Mechanics, vol. 19, pp. 125-155 (1987)
M.S. Chong, A.E. Perry, B.J. Cantwell, A general classification of three-dimensional flow fields, Physics of Fluids, vol. 2 pp. 765-777 (1990)

2- Shock-turbulence interactions
Characteristics of shocked turbulence
Second- and third-order invariants of the tensor \boldsymbol{A}^{*}

$$
A^{*}=\nabla \boldsymbol{u}^{\boldsymbol{T}}-(\boldsymbol{\nabla} \cdot \boldsymbol{u}) \boldsymbol{I} / 3
$$

J. Ryu, D. Livescu, Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, Journal of Fluid Mechanics, vol. 756, pp. R1-R13 (2014)
R. Boukharfane, Z. Bouali, A. Mura, Scalar and velocity dynamics evolutions in planar shock-turbulence interaction, Shock Waves, vol. 28(6), pp. 1117-1141(2018)

Characteristics of shocked turbulence
Second- and third-order invariants of the tensor \boldsymbol{A}^{*}

$$
A^{*}=\nabla \boldsymbol{u}^{\boldsymbol{T}}-(\boldsymbol{\nabla} \cdot \boldsymbol{u}) \boldsymbol{I} / 3
$$

The inclined teardrop shape and the clustering along the Vieillefosse tail closely resembles the JPDF found in incompressible HIT
J. Ryu, D. Livescu, Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, Journal of Fluid Mechanics, vol. 756, pp. R1-R13 (2014)
R. Boukharfane, Z. Bouali, A. Mura, Scalar and velocity dynamics evolutions in planar shock-turbulence interaction, Shock Waves, vol. 28(6), pp. 1117-1141(2018)

Characteristics of shocked turbulence
Second- and third-order invariants of the tensor \boldsymbol{A}^{*}

$$
A^{*}=\boldsymbol{\nabla} \boldsymbol{u}^{T}-(\boldsymbol{\nabla} \cdot \boldsymbol{u}) I / 3
$$

Increased relevance of topologies SNSS and UFC
J. Ryu, D. Livescu, Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, Journal of Fluid Mechanics, vol. 756, pp. R1-R13 (2014)
R. Boukharfane, Z. Bouali, A. Mura, Scalar and velocity dynamics evolutions in planar shock-turbulence interaction, Shock Waves, vol. 28(6), pp. 1117-1141(2018)

2- Shock-turbulence interactions
Characteristics of shocked scalar turbulence
Downstream of the shock location (case 1-W/O-SW)
Same position (case 1-W/-SW)

Scalar dissipation rate (SDR) $N_{\xi}=D \frac{\partial \xi}{\partial x_{i}} \frac{\partial \xi}{\partial x_{i}}$

Characteristics of shocked scalar turbulence

Normalized scalar variance and SDR evolutions

R. Boukharfane, Z. Bouali, A. Mura, Scalar and velocity dynamics evolutions in planar shock-turbulence interaction, Shock Waves, vol. 28(6), pp. 1117-1141(2018)

Characteristics of shocked scalar turbulence
Scalar dissipation rate evolution (SDR)

$$
\frac{\partial}{\partial t}\left(\bar{\rho} \widetilde{N}_{\xi}\right)+\frac{\partial}{\partial x_{j}}\left(F_{j}^{\widetilde{N}_{\xi}}\right)=\cdots-2 \rho N_{\xi}^{i j} \frac{\partial u_{i}}{\partial x_{j}}-2 \rho D^{2} \frac{\partial^{2} \xi}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} \xi}{\partial x_{i} \partial x_{j}}
$$

(TSI) (Dissipation)
Determination of the eigen-frame of the strain-rate tensor (symmetric part of the VGT)

$$
\operatorname{det}\left(S_{i j}-\lambda \delta_{i j}\right)=0 \text { eigen-vectors associated to compression and straining }
$$

Expression of the turbulence-scalar interaction (TSI) term in the eigenframe of the strain-rate tensor

$$
\begin{array}{ll}
\hline \text { (TSI })=-2 \overline{\rho N_{\xi}^{i j} S_{i j}}=-2 \overline{\rho N_{\xi} \lambda_{k} \cos ^{2} \theta_{k}} & \theta_{k}=\left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{k}\right) \\
& \boldsymbol{n}_{\xi}=\boldsymbol{\nabla} \xi /\|\boldsymbol{\nabla} \xi\|
\end{array}
$$

Characteristics of shocked scalar turbulence

Orientations statistics of the scalar gradient in the strain-rate eigenframe
Let us consider two principal directions (only for the sake of simplicity)

* one principal direction of straining, eigenvalue and eigenvector $\lambda_{1}>0 ; \boldsymbol{e}_{1}$

$$
\theta_{k}=\left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{k}\right)
$$

* one principal direction of compression, eigenvalue and eigenvector $\lambda_{3}<0 ; \boldsymbol{e}_{3}$

Scalar gradient $\boldsymbol{\nabla} \boldsymbol{\xi} / / \boldsymbol{e}_{1}$ (straining)

Scalar gradient $\boldsymbol{\nabla} \xi / / e_{3}$ (compression)

2- Shock-turbulence interactions

Characteristics of shocked scalar turbulence

Turbulence-scalar interaction (TSI) may increase or decrease the scalar mixing rate Analysis in the eigen-frame of the strain-rate tensor (symmetric part S of the VGT)

$$
\mathrm{TSI}=-2 \rho N_{\xi} \sum_{k=1}^{k=3} \lambda_{k} \cos ^{2} \theta_{k} \quad \theta_{k}=\left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{k}\right)
$$

2- Shock-turbulence interactions
Characteristics of shocked scalar turbulence
Turbulence-scalar interaction (TSI) may increase or decrease the scalar mixing rate Analysis in the eigen-frame of the strain-rate tensor (symmetric part S of the VGT)

$$
\mathrm{TSI}=-2 \rho N_{\xi} \sum_{k=1}^{k=3} \lambda_{k} \cos ^{2} \theta_{k} \quad \theta_{k}=\left(\boldsymbol{n}_{\xi}, \boldsymbol{e}_{k}\right)
$$

Available computational databases and post-processing tools

- Fully premixed flame kernels development in homogeneous turbulence
- Vaporizing two-phase flows in homogeneous turbulence
- Interaction of homogenous (velocity and scalar) turbulence with a planar shock

Inspection of the DNS data and physical analyses (still ongoing work ...)

- Unconditional and conditional characterization of the turbulence (TKE, Reynolds stresses, characteristic scales, spectra, structure functions, etc.)
- Topology of the turbulent flow-field: portrays of the JPDF of Q and R, Lagrangian evolution
- Scalar gradient orientations statistics and dynamics

The ultimate objective is to end up with modelling proposals

The input of Song Zhao, Radouan Boukharfane, Aimad Er-raiy, Zakaria Bouali and Guillaume Lehnasch is gratefully acknowledged

The input of Song Zhao, Radouan Boukharfane, Aimad Er-raiy, Zakaria Bouali and Guillaume Lehnasch is gratefully acknowledged

Thank you for your kind attention

