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Observation of huge waves
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Photo of a huge wave event
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Super tanker collisions with freak waves (1968-1994).
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Rogue waves in 2005 (Didenkulova et al, 2006)
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◮ Time record of the New Year Wave in the North Sea
(Hfreak = 25.3m, ηcrest = 18.5m, Hs = 11.9m)
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Ferry collisions with rogue waves near the French coast

◮ The Pont Aven (L = 597 ft ) hit a rogue wave (≈ 15m)
during the night 21-22 May 2006.

◮ The Louis Majesty (L = 207m) hit a rogue wave (≈ 17m) on
3 March 2010 and two passengers were killed.

◮ The Jean Nicoli (L = 200m) hit a rogue wave ((≈ 20m) on 6
March 2017.
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Physical mechanisms of rogue wave generation
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◮ Wave-current interactions

◮ Geometrical or spatial focusing

◮ spatio-temporal focusing or dispersive focusing

◮ modulational instability (resonant four-wave interaction)

◮ crossing seas

◮ soliton collision

◮ etc.
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◮ Mathematically, a rogue wave of height Hf satisfies

Hf > 2Hs

◮ Hf is more than twice the significant height Hs or 8 times the
rms of the surface elevation

◮ Waves with larger heights than expected based on the
Rayleigh distribution (abnormal waves)

◮ The above definition was proposed by Soren Peter Kjelsen in
1989 during the Workshop on Water Wave Kinematics, Molde
(Norway)

◮ Water Wave Kinematics, Nato ASI series, eds. A.Torum &
O.T. Gudmestad, 1990
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Cumulative distribution function (%) as a function of normalized
wave heightH/Hs (from Sand et al, 1989) corresponding to North

Sea data during stormy weather
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Modulated water waves without and with the
presence of a shear current
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Wind waves in the Large Air-Sea Interaction Facility (LASIF)
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Fetch: 18m and wind speed: 10m · s−1 from (H. Branger)
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Wind waves in open field
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◮ This strong group structure of the wave field or modulational
aspect of the surface elevation is due to resonant 4-wave
interactions

◮ An elegant analytical method to study nonlinear modulational
processes is the nonlinear Schrödinger equation
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The nonlinear Schrödinger equation

(NLS equation)

◮ governs the spatio-temporal evolution of the complex envelope
of the free surface of weakly nonlinear and dispersive water
waves

◮ is a universal equation that can be derived from the nonlinear
water wave equations using the method of multiple scales

◮ was first derived within the framework of water waves by
Benney & Newell (1967)
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◮ Let us consider a weakly nonlinear modulated wave train
propagating on finite depth at the free surface of a shear
current of constant vorticity

η(x , t) =
1

2
(ǫa(ξ, τ) exp[i(kx − ωt)] + c .c) +O(ǫ2)

where ξ = ǫ(x − cg t) and τ = ǫ2t.

◮ Starting from the nonlinear water wave equations and using
the method of multiple scales, the evolution of the complex
envelope is governed by the NLS equation

i(aτ + cgaξ) + Laξξ + N | a |2 a = 0
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L =
ω

k2σ(2 + X )
{µ(1− σ2)[1 − µσ + (1− r)X ]− σr2}

N = − ωk2(U + VW )

2(1 + X )(2 + X )σ4

U = 9− 12σ2 + 13σ4 − 2σ6 + (27 − 18σ2 + 15σ4)X

+(33− 3σ2 + 4σ4)X 2 + (21 + 5σ2)X 3 + (7 + 2σ2)X 4 + X 5

V = (1 + X )2(1 + r + µΩ) + 1 + X − rσ2 − µσX

W = 2σ3
(1 + X )(2 + X ) + r(1− σ2)

σr(r + µΩ)− µ(1 + X )

where µ = kh, σ = tanh(µ), r = cg/cp , Ω = Ω/ω(Ω) and X = σΩ

In deep water without shear current the coefficients reads

L = − ω

8k2
and N = −1

2
ωk2

Christian Kharif Fluid Turbulence Applications in both industrial and environmental



◮ The vor-NLS equation admits the following Stokes’ wave
solution

a = a0 exp(iNa
2

0τ)

◮ Perturbation

a = a0(1 + δa) exp[i(δω + Na20τ)]

with

δa = (δa)0 exp[i(lξ − λτ)]

δω = (δω)0 exp[i(lξ − λτ)]
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◮ Condition of linear instability with respect to sideband
perturbations

LN > 0

Let L = L1ω/k
2 and N = N1ωk

2

◮ Modulational instability occurs for perturbations whose
wavenumber l satifies

−
√

2
N1

L1
ka0 <

l

k
<

√

2
N1

L1
ka0

◮ The growth rate of instability is

γ =
lω

k2

√

2N1L1k4a
2

0
− l2L2

1

◮ Maximal growth rate

γmax = −N1ω(a0k)
2

for lmax =
√

N1/L1a0k
2

◮ For Ω < −2
√

gk
3σ

⇒ no BF instability
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Nonlinear evolution of BF instability
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steepness |A0|k = 0.125 amplified by its most unstable

perturbation (FPU recurrence)

i
∂q

∂T
+

∂2q

∂X 2
+ 2 | q |2 q = 0

with

T =
1

2
ωτ, X = 2kξ, q =

1√
2
kA∗
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Experimental spectrum evolution of modulated waves

Carrier wave steepness 0.07 (without wind, from H. Branger)
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Application to Rogue Waves when modulational instability prevails

◮ The key parameter measuring the importance of the nonlinear
four-wave interaction is the Benjamin-Feir Index (BFI) which
is the ratio of the wave steepness to the normalized spectral
bandwidth.

◮ Within the framework of the NLS equation the BFI writes

BFI =
a0k

∆K/k

√

| N1/L1 |

where ∆K is a typical spectral bandwidth (Onorato et al, 2006 and
Kharif et al, 2009)

◮ The BFI is a convenient indicator for prediction of rogue wave
occurrence. It is related to the pdf of wave heights. The
rogue wave probability occurrence increases with the BFI.
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Thomas, Kharif & Manna (POF, 2012)
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Normalized BFI as a function of kh for several values of Ω:
Ω = 0 (solid line), Ω = 1 (dashed line), Ω = 2 (dot-dashed line)
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Thomas, Kharif & Manna (POF, 2012)
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