Vortices in classical fluids and superfluid Bose-Einstein condensates: a numerical investigation

Ionut Danaila

Laboratoire de mathématiques Raphaël Salem Université de Rouen Normandie, France http://ionut.danaila.perso.math.cnrs.fr/

Fluid turbulence Applications in Both Industrial and ENvironmental topics Marseille, July 8, 2019.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Main message of the talk

Many thanks, Fabien, for the initial scientific impulse!

... back in 1997!

◆ロ → ◆檀 → ◆理 → ◆理 → □ 理 □

... back in 1997!

▲□ → ▲圖 → ▲ 国 → ▲ 国 → 二 国

Scientific Computing at LMRS and Applications

(horribly cold) Super-Fluids : Bose-Einstein Condensates

(I Danaila, LMRS)

BEC

Scientific Computing at LMRS

BEC

Vortices in <u>classical</u> fluids

Aircraft trailing vortices

Vortex rings (Etna volcano)

IRMA Hurricane

Niagara Falls 2019

(日)

Models for classical vortex rings

Basse pression Swirl

Multi-jet

Diesel

New types of gasoline injectors French project MAGIE

 Rouen Y. Zhang F. Luddens

Paris F. Hecht

- Brighton (UK)
- S. Sazhin
- F. Kaplanski
- A. Papoutsakis
- Canada B. Protas (McMaster)

(日)

Introduction

Contributions in this field (see my web page)

- use high-resolution DNS for the physics of vortex rings,
 I. Danaila and J. Hélie, <u>Physics of Fluids</u>, 2008.
- derive analytical and numerical models for the inflow,
 I. Danaila, C. Vadean, S. Danaila, Th. Comput. Fluid Dynamics, 2009.
- use vortex rings models to reconstruct PIV fields.
 Y. Zhang and I. Danaila, <u>J. of Numerical Mathematics</u>, 2012.
 Y. Zhang and I. Danaila, <u>Applied Mathematical Modelling</u>, 2013.
 I. Danaila and B. Protas, <u>Proc. Royal Soc. A</u>, 2015.
- derive/test analytical models of confined vortex rings,
 I. Danaila, F. Kaplanski and S. Sazhin, <u>J. Fluid Mechanics</u>, 2015.
 I. Danaila, F. Kaplanski and S. Sazhin, <u>J. Fluid Mechanics</u>, 2017.

I. Danaila, F. Luddens, F. Kaplanski, A. Papoutsakis, and S. Sazhin, Phys Rev Fluids, 2018.

How simply describe the BEC?

New state of the matter : super-atome

source Science, 2005

э

・ ロ ト ・ 雪 ト ・ 目 ト ・

A possible new technological revolution!

Highly controlable system

- atomic clocks, interferometry, GPS, microscopy,
- atomic "lasers" for nano-lithography chip imprinting,
- quantic computer.

W. Ketterle, Collège de France, 2005

・ロット (雪) (日) (日)

classical fluids

• easy intuition (velocity - pressure)

solid rotation

classical fluids

- easy intuition (velocity pressure)
- complicated math description

solid rotation

classical fluids

- easy intuition (velocity pressure)
- complicated math description

superfluids

- difficult intuition (vanishing viscosity)
- simple math description (wave function)

solid rotation

local rotation

 $\equiv \rightarrow$

< E

classical fluids

- easy intuition (velocity pressure)
- complicated math description

superfluids

- difficult intuition (vanishing viscosity)
- simple math description (wave function)

solid rotation

Vortices in a Bose-Einstein condensate

Macroscopic description

• $\psi \in \mathbb{C}$ wave function

$$\psi = \sqrt{\rho(r)} e^{i\theta(r)}$$

- vortex :: $\rho = 0 + rotation$
- velocity field

$$v(r) = \frac{h}{m} \nabla \theta$$

quantified circulation

$$\Gamma = \int v(s) ds = n \frac{h}{m}$$

Identification of a quantized vortex (2)

• phase portraits

optical lattice

(日)

Quantum Turbulence (QT) in BEC

BEC = perfect superfluid system for QT

- pure superfluid system,
- highly controlable (phase imprinting),
- larger vortex cores than in He,
- finite size \rightarrow rotating/oscillating QT.

(日)

Recent experiments/Special volumes

- Henn et al., J. Low Temp. Phys., 2010.
- Seman et al., Laser Phys., 2011.
- (Edts) Tsubota & Halperin, Elsevier, 2009.
- (Edts) Barenghi & Sergeev, Springer, 2008.

ANR project QUTE-HPC: QUantum Turbulence Exploration by High-Performance Computing

Agence Nationale de la Recherche

ANR Project QUTE-HPC (2019-2022)

10 members, 5 Physics/5 Mathematics

- (HPC) parallel codes for QT :: open source,
- huge simulations of physical configurations (compare with our own experiments).

http://qute-hpc.math.cnrs.fr/

ANR Project BECASIM (2013-2017)

25 members from Mathematics

- new numerics for real and imaginary time GP,
- mathematical theory, numerical analysis.

Models for superfluids (T=0)

0

Time-dependent GP \rightarrow real time dynamics

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V_{\text{trap}} \psi + g |\psi|^2 \psi - i\hbar \Omega \mathbf{A}^t \cdot \nabla \psi$$

Time-independent GP ightarrow ground and meta-stable states

$$\psi = \phi \exp(-i\mu t/\hbar), \quad -rac{\hbar^2}{2m}
abla^2 \phi + V_{trap} \phi + Ng_{3D} |\phi|^2 \phi - \mu \phi = 0$$

Bogoliubov - de Gennes \rightarrow stability of stationary states

$$d\psi = \left(\boldsymbol{a}(\mathbf{x})\boldsymbol{e}^{-i\omega t} + \boldsymbol{b}^*(\mathbf{x})\boldsymbol{e}^{i\omega^* t} \right),$$

$$\begin{pmatrix} \mathsf{H}(\Omega) & g\phi^2 \\ -g(\phi^*)^2 & -\mathsf{H}(-\Omega) \end{pmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \hbar\omega \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix}$$

$$H(\Omega) = -rac{\hbar^2}{2m}
abla^2 - \mu(\phi) + V_{
m trap} + 2g|\phi|^2 - i\hbar\Omega \mathbf{A}^t \cdot \mathbf{
abla}$$

Computation of stationary states

- used as initial conditions for time-dependent simulations,
- analyse meta-stable states observed in experiments,
- used for stability analysis (Bogoliubov-de Gennes).

Minimisation of the GP energy

$$\mathcal{D} \subset \mathbb{R}^3$$
 et $\textit{u} = 0$ on $\partial \mathcal{D}$

$$E(u) = \int_{\mathcal{D}} \frac{1}{2} |\nabla u|^2 + C_{trap}(\mathbf{r})|u|^2 + \frac{C_g}{2}|u|^4 - iC_{\Omega} \int_{\mathcal{D}} u^* \mathbf{A}^t \cdot \nabla u$$

under the unitary norm constraint

$$\int_{\mathcal{D}} |u|^2 = 1$$

(meta-)stable states :: local minima of the energy min E(u)

Numerical methods for the stationary GP equation

- Imaginary time propagation.
- Direct minimization of the energy \longrightarrow Sobolev gradients.

(日)

Sobolev gradient descent method

Normalized gradient flow

$$\frac{\partial u}{\partial t} = -\nabla E(u)$$

$$-\frac{1}{2}\nabla_{L^2}E(u)=\frac{1}{2}\Delta u-C_{trap}u-C_g|u|^2u+iC_{\Omega}\mathbf{A}^t\cdot\nabla u$$

New ideas

- Define a "better gradient" for the descent method.
- 2 Evolve the iterates close to the spherical manifold.
- Use Riemannian Optimization for the conjugate-gradient.

A D > A B > A B > A B >

Riemanian conjugate-gradient method

I. Danaila, B. Protas, SIAM J. Sci. Computing, 2017.

(RCG)
$$u_{n+1} = \mathcal{R}_{u_n}(-\tau_n d_n), \quad n = 0, 1, \dots,$$
 (1)

$$d_{0} = -P_{u_{0},H_{A}}G_{0},$$

$$d_{n} = -P_{u_{n},H_{A}}G_{n} + \beta_{n} \mathcal{T}_{-\tau_{n-1}}d_{n-1}(d_{n-1}), \qquad n = 1,2,...$$
(2)

Polak-Ribière momentum term

$$\beta_{n} = \beta_{n}^{PR} := \frac{\left\langle P_{u_{n},H_{A}}G_{n}, \left(P_{u_{n},H_{A}}G_{n} - \mathcal{T}_{-\tau_{n-1}}d_{n-1}P_{u_{n-1},H_{A}}G_{n-1}\right)\right\rangle_{H_{A}}}{\left\langle P_{u_{n-1},H_{A}}G_{n-1}, P_{u_{n-1},H_{A}}G_{n-1}\right\rangle_{H_{A}}}$$
(3)

optimal descent step (Brent's method)

Riemanian conjugate-gradient method

I. Danaila, B. Protas, SIAM J. Sci. Computing, 2017.

(RCG)
$$u_{n+1} = \mathcal{R}_{u_n}(-\tau_n d_n), \quad n = 0, 1, \dots,$$
(1)

Implementation in the FreeFem++ toolbox ... in progress!

- looks horrible, but ...
- easy and elegant implementation (like the math formulation)!

$$\beta_{n} = \beta_{n}^{PR} := \frac{\left\langle P_{u_{n},H_{A}}G_{n}, \left(P_{u_{n},H_{A}}G_{n} - \mathcal{T}_{-\tau_{n-1}}d_{n-1}P_{u_{n-1},H_{A}}G_{n-1}\right)\right\rangle_{H_{A}}}{\left\langle P_{u_{n-1},H_{A}}G_{n-1}, P_{u_{n-1},H_{A}}G_{n-1}\right\rangle_{H_{A}}}$$
(3)

optimal descent step (Brent's method)

BEC with dense Abrikosov lattice (2)

Harmonic potential and high angular velocities: $C_{\text{trap}} = r^2/2, C_g = 1000, C_{\Omega} = 0.9.$

FreeFem++ Toolbox (www.freefem.org)

Developers: G. Vergez, I. Danaila, F. Hecht. Computer Physics Communications, 2016 (with programs)!

GPFEM: finite element solver

2D/3D anisotropic mesh adaptation, flexibility for boundary conditions,

- stationary GP: different Sobolev gradients.
- instationary GP: splitting, relaxation schemes.

Simulation of fast rotating condensates

• (stationary GP) 3D simulation of the experimental configuration (10⁷ grid points).

V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 2003.

I. Danaila, Phys. Rev. A, 2005.

(日)

2005 3D Simulation: grid 240³ = 2 weeks of CPU

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ─ 圖 □

3D Simulation: grid 512³ = 1 day of CPU

★白▶★御≯★注≯★注≯ 注意 -

ANR project QUTE-HPC: QUantum Turbulence Exploration by High-Performance Computing

http://qute-hpc.math.cnrs.fr/

Post-doc position available immediately in Rouen

Modelling and HPC numerical simulations of Quantum Turbulence. Models for coupling Gross-Pitaevskii and Navier-Stokes equations.

(日)

Collaborators

QUTE-HPC

- M. Brachet I. Ciotir L. Danaila E. Lévêque C. Lothodé F. Luddens Ph. Parnaudeau Ph. Roche
- FreeFem++
- F. Hecht
- G. Vergez
- P.-E. Emmeriau
- Physics (ENS) F. Chevy S. Laurent

International

R. Carretero (San Diego) P. Kevrekidis (UMas Amherst) M. Kobayashi (Kyoto) B. Protas (McMaster)

イロト イ理ト イヨト イヨト

Conclusion

Thanks Fabien for the initial scientific impulse and your human guidance!

BEC

Conclusion

Thanks Fabien for the initial scientific impulse and your human guidance!

```
int i=60;
while (i)
{            cout<<" Many happy returns !" << i << endl;
            i++;
}</pre>
```

