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Motivation

Laminar flows belong to laboratories, anywhere else flows are turbulent. Big issue: Kolmogorov

theory means that the turbulence adapts to molecular transport, yet experiments show large influence of

the latter, e.g. in flames. There are two ways to describe a turbulent flow:

⋆ Eulerian, i.e. in fixed coordinate system

⋆ The so-called closure problems

⋆ Not easy to formulate equations for probability density functions

⋆ Lagrangian, i.e. in coordinates moving with the flow. These methods often combine with Monté

-Carlo methods. The flow is represented as an ensemble of infinitesimally small fluid particles with

Lagrangian marker typically taken as the the pair (x0, t0) of the position x0 at some initial time t0.

⋆ How to describe molecular transport of mass with massless particles?
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Formulation
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⋆ A mesoscale element (m.e.) is a moving parcel of the fluid with a fixed mass me which represents

properties and influence of a much larger mass of fluid surrounding it. In that, the mesoscale method

is a coarse-grained description of turbulence in Lagrangian frame.

⋆ Mesoscale element has only a probability of presence at a point but no deterministic position, contrary

to other Lagrangian methods where infinitely small particles do have a deterministic position.

⋆ Each mesoscale element is attributed a set of time-dependent properties, and even though sensu stricto

a finite size flow domain must have a distribution of properties, properties of an m.e. are taken as

single deterministic values following some evolution equations.
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Formulation - averaging

The essential property of an m.e. is its influence on the other locations within the flow domain:

ḡ(z, t) =

∑Ne

k gk(t)pk(z)
∑Ne

j pj(z)

and, in particular, the pdf of any quantity g may be found as:

P (ĝ, z, t) =

∑Ne

k δ(ĝ − gk(t))pk(z)
∑Ne

j pk(z)

Even though an m.e. has a finite size, it is assumed that pi(z) has the functional form similar to the

position pdf of the single particle diffusion with the difference that the probability of the spread of the

m.e. position is taken around the variable xi(t) rather than a fixed origin:

pi(z) ≡ pi (z;xi(t), σi(t)) = (2π)−3/2σ−3
i (t) exp

(

−
(z− xi(t))

2

2σ2
i (t)

)

Growth of the radius of influence σ̇i(t) is determined by the growing dispersion of the m.e. and is equivalent

to the problem of the relative diffusion of a cloud of contaminant; when σi is within the inertial interval:

σ̇i(t) = ∆u (σi) = Cσ (ε(xi, t)σi)
1/3

where ε(xi, t) is the local turbulence dissipation rate and Cσ = 0.25 is a universal constant
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Eulerian balance equations corresponding to m.e. method

∂tḡ(z, t) +∇z · u(z, t)g(z, t) = Sg +D

where

u(z, t)g(z, t) =
∑

i

giẋip̃i

Sg =
∑

i

ġi p̃i

D =
∑

i

gi
∑

k

σ̇k∂σk
p̃i

When all mesoscale elements have the same value of the property g, this equation reduces to∇z ·u = 0;

this means that it conserves the mass in incompressible flows where all m.e. have the same density.

Further two useful identities may easily be shown:

∑

i

(

∑

k

σ̇k∂σk
p̃i

)

= 0
∑

i

(

∑

k

ẋk∇xk
p̃i

)

= 0

These two expressions may be in particular be used to demonstrate that m.e. equations satisfy mass

conservation in incompressible case regardless of specific expressions for σ̇k and ẋk.
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Mesoscale element dimensions

The mesoscale element is taken as a small bent and twisted square patch of the constant mass Me =

Cmρ0λ
3 where ρ is density, λ = lt · Re

−1/2
t is the Taylor scale of turbulence. One side of it, ζ-side, is

aligned with the largest component of the scalar gradient while its length or width ξ(t) is taken as the

extent in either of other two dimensions. Evolution of m.e. thickness ζ(t) is determined by four processes:

growth caused by molecular diffusion, decrease or increase from compressive or extensive hydrodynamic

strain rate, respectively, in ζ direction, and decrease caused by the the strain rate in ξ direction, and the

folding of m.e. There is a clear separation of scales on which these phenomena act, and therefore, at least

as a good first approximation, their effects are additive. Folding acts on scales larger than the integral

longitudinal length scale, much larger than m.e. dimensions, hence it may be neglected. Thus:

dζ(t)

dt
= udiff + ustrain

It may then be shown that:

dζ

dt
= A1

(

D

t

)1/2

− A2ζ

[

2u′

l
1/3
t ξ2/3

·

(

1− f1/2

(

ξ

lt

))

+
1

ρ
·
dρ

dt

]

where A1 and A2 are model constants and the longitudinal velocity correlation function f(z) may be

approximated as:

f(z) = J0

(

z

blt

)

· exp

(

−
z

alt

)
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ME dimensions: homogeneous turbulence
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Temporal evolution of the meso-scale element (diffusive

layer) thickness for the different m.e. initial dimensions,

shown in the legend. The thickness is normalised by the

Kolmogorov scale η, the time is normalised by the in-

tegral time scale τt. The molecular diffusivity D =

0.2cm2/sec; u′ = 100cm/sec, lt = 5mm; η =

94.6µm.
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Temporal evolution of the meso-scale element (diffu-

sive layer) thickness for the different turbulence char-

acteristics, shown in the legend. The tickness is nor-

malised by the Kolmogorov scale η, the time is nor-

malised by the integral time scale τt. The molecular dif-

fusivity D = 0.2cm2/sec is kept constant; the m.e.

initial size constant is cm = 1.0 so ζ(t = 0) = λ.
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Homogeneous turbulence: brief summary

• The model results are only weakly sensitive to the initial dimensions of meso-scale element

• The small-scale diffusion layer width is changing rapidly for several integral time scales

• After as long as 10-20 integral time scales the width becomes approximately equal to the Kolmogorov

length

• Residence time in many appliances is only a few integral time scales; thus elements of a mixing layer

would have transient non-steady width.
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ME dimensions: jet flows

• Round and plane jets: experimental conditions of Bush & Dahm and Clemens et al.

• Steady-state Favre-averaged Navier-Stokes equations

• Parabolic flow approximation, marching scheme

• Fully developed pipe turbulence as inlet conditions

• Standard k − ε model without any adjustment of “constants”

• For a steady-state flow the trajectory time was defined as:

t(y⋆) =

∫ x

0

dx

ũ (x, y⋆(x))

where y⋆(x) is the radial, or transverse, position corresponding to a fixed constant fraction of the total

mass flow. Obviously, the travel time will differ between jet centre and boundary.
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Plane jet scales: fast jet
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Downstream evolution of the turbulence length scales and

m.e. thickness on a symmetry plane of a plane jet. The

exit jet velocity is U0 = 10.9m/sec, the co-flow velocity

is U∞ = 0.3m/sec, the jet exit width is h = 1mm
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Downstream evolution of the turbulence length scales and

the diffusive layer thickness on a boundary of a plane jet.

The exit jet velocity is U0 = 10.9m/sec, the co-flow

velocity is U∞ = 0.3m/sec, the jet width is h = 1mm
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Plane jet scales: slow jet
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Downstream evolution of the turbulence length scales and

m.e. thickness on a symmetry plane of a plane jet. The

exit jet velocity is U0 = 5.6m/sec, the co-flow velocity

is U∞ = 0.3m/sec, the jet exit width is h = 1mm
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Downstream evolution of the turbulence length scales and

the diffusive layer thickness on a boundary of a plane jet.

The exit jet velocity is U0 = 5.6m/sec, the co-flow

velocity is U∞ = 0.3m/sec, the jet width is h = 1mm
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Round jet results
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Evolution of the diffusive layer thickness and turbulence length scales with the downstream distance for a round jet.

The numbers by the curves denote: 1 - jet axis; 2 - jet periphery. The exit jet velocity is U0 = 22.4m/sec, with the co-flow

velocity of U∞ = 15.0m/sec. The jet diameter is d = 7.7mm

At the downstream positions x1 = 0.3m and x2 = 0.5m the simulations yield ζ1 = 0.485mm and

ζ2 = 0.430mm at the centre and ζ1 = 0.486mm and ζ2 = 0.533mm at the boundary, at an excellent

agreement with the average values measured in Buch and Dahm(1998) JFM, 364:1–29
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Jet flows: brief summary

• For a plane jet, the diffusion layer width is steadily increasing. On the jet centre its value is λ >>

ζ >> η, on the boundary ζ ≈ η.

• For a round jet, the diffusion layer width ζ ≈ η on the symmetry axis; ζ << η on the jet boundary

owing to very fast turbulence decay there.

• Yet, the model predicts very close values of the diffusion layer width on the centre and the boundary.

• For both round and plane jet, the predicted ζ is in a fair agreement with the exprimental data.
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Equations of evolution of mesoscale element properties.

the net acceleration of the element is obtained as a sum of pairwise interactions between m.e. where

each act of interaction between two mesoscale elements conserves momentum. Acceleration of i−th m.e.

may thus be written as:

u̇i =
∑

j

u̇ij

where uij is the acceleration caused by its interaction with the j−th m.e. In addition to externally

imposed bulk forces, there are two physical agents by which one fluid element affects momentum of other

fluid elements: pressure and viscosity,

u̇ij = u̇
p
ij + u̇v

ij

Momentum: pressure field

Consider two m.e. the presence pdf of which pi(z, t) and pj(z, t) are centred at xi and xj; the exchange

of momentum by pressure waves between them is much faster than their motion, thus their positions may

be taken frozen at xi and xj. The net pressure force between these m.e. will be Fp = (Πj −Πi)Seff
xi−xj

(xi−xj)

where Seff is the cross-sectional area of the m.e. orthogonal to xi − xj. This force will accelerate

of the column of the liquid between and including the two m.e. the mass of which may be taken as
ρi+ρj

2 Seff |xi − xj|. By the Second Law of Newton the pressure part of acceleration of either m.e. is

u̇
p

ij = u̇
p

ji =
2(Πj −Πi)

ρi + ρj

xi − xj

(xi − xj)2
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Change of m.e. properties caused by molecular transport

Pairwise contact interaction

ξ 2

ξ1

ζ

ξ

ξ

ζ

The act of interaction between m.e. of which the

presence pdf pi(z, t) and pj(z, t) are centred at xi

and xj may happen at any position z within the

flow owing to unbounded support of the presence

pdf

The total time of interaction pijdt during this

time interval between i− th and j-th m.e. is found

taking into account that they move and may in-

teract at any point as:

pij(t)dt =
πmax3(ξi, ξj)

6
·

∫

V

pi(z, t)pj(z, t)dz

Performing integration, one obtains:

pij(t)dt =
max3(ξi, ξj)

12 (2π)1/2

(

1

σ2
i

+
1

σ2
j

)
3

2

exp

(

−
(xi − xj)

2

2
(

σ2
i + σ2

j

)

)
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M.E. momentum exchange: viscosity

The viscous force Fij arising at the contact i-th and j-th m.e. is linearly proportional to the area Sc

of contact between the m.e. and inversely proportional to the m.e. dimension dc normal to the plane of

contact. The velocity difference inducing the force comes from the difference of the m.e. mass velocities

uj−ui but also, in case of a variable density medium, e.g. gas flow with heat exchange, isotropic dilatation

velocities:

δuρij = uρj − uρi = δuρij

∑

m

bm

where

uρi = −

(

me

36πρi

)1/3
ρ̇i
ρi

∑

m

bm

is the dilatation velocity. It will also add a term proportional to the bulk viscosity to the normal force

component Fnij = Fij · τn.

Fnij =
Sc

dc

[

µij (uj − ui + δuρij) · τn +

(

ηij −
2

3
µij

)

uρij · τn

]

Ft1ij =
Sc

dc
[µij (uj − ui + δuρij) · τt1 ]

Ft2ij =
Sc

dc
[µij (uj − ui + δuρij) · τt2 ]
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M.E. rate of change of momentum

The m-th component of the i-th m.e. acceleration induced by the viscous interaction with j-th m.e.

will be determined by the force averaged over the random contact orientation angles. Assuming random

orientation at the contact one obtains:

u̇v
mij =

Sc pij(t)

dcme

[

µij (umj − umi + δuρij) +
1

3

(

ηij −
2µij

3

)

δuρij

]

The contact area Sc is a random quantity which depends on how irregular is the shape of m.e. in contact

and their orientation in space. The m.e. dimensions ξ and ζ are orthogonal, so a very simple approach

would be to assume that the contact area is proportional to ξ2 if the unity vectors in ζ direction are

aligned, ζi · ζj = 1, and ξζ if those vectors are orthogonal, ζi · ζj = 0. There are no reasons to assume

non-zero correlation between ζi, ζj and τn, the m.e. orientation is random, the average of ζi · ζj is zero, and

therefore, the contact area should be proportional to Sc ∼ ξζ and, by the same argument, the distance dc
normal to the contact is then proportional to ξi + ξj . Finally, one may obtain:

u̇mi =
1

ρi

∑

j 6=i

[

Πj −Πi

(xi − xj)
2 (xmi − xmj)

+
ξjζjpij

(ξj + ξi) ξi

[

µiµj(umj − umi + δuρij)

µiξiζi + µjξjζj
+

ωiωjδuρij

ωiξiζi + ωjξjζj

]]

where ω = η − 2µ
3 is the second viscosity. Potential of external forces, if present, may be included into Π,

e.g. as hydrostatic pressure.
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Meso-element properties: mass diffusion

Similarly to the viscous flux of momentum, the rate of the molecular transfer of g between i-th and j-th

m.e. must be linearly proportional to the area Sc of contact between them, and, as a first approximation,

Dg, the molecular diffusivity of g and the difference gi − gj ; it should be inversely proportional to the m.e.

dimension normal to the plane of contact taken above as ξi + ξj . As

∆g =
d

dt
(meg) =

d

dt
(ρξ2ζg)

the molecular transfer contribution to ġi is expressed as a sum of pairwise interactions with the entire m.e.

set:

ġi = −
∑

j

DgiDgjξjζj
Dgiξiζi +Dgjξjζj

ρigi − ρjgj
ρiξi(ξi + ξj)

pij

It is easy to see that the total amount of g in the flow is conserved:

d

dt

(

∑

i

ρiξ
2
i ζigi

)

= 0

Adding source terms, e.g. due to chemistry, provides an evolution equation for ġi for any m.e.
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Illustration of the method: mixing layer in grid turbulence
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Profiles of the mean scalar vs. self-similar variable η across

the mixing layer for the dimensionless distance downstream

shown in the legend. Symbols show measurements of LaRue

& Libby(1981). The thick lines show the profiles obtain with

the mesoscale elements method, the thin lines - diffusion

equation
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Profiles of the scalar root-mean-square value vs. self-similar

variable η across the mixing layer for the dimensionless dis-

tance downstream shown in the legend. Symbols show mea-

surements of LaRue & Libby(1981). The lines show the pro-

files obtain with the mesoscale elements method.
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Illustration of the method: mixing layer in grid turbulence
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Profiles of the scalar skewness vs. self-similar variable η

across the mixing layer for the dimensionless distance down-

stream shown in the legend. Symbols show measurements of

LaRue & Libby(1981). The lines show the profiles obtained

with the mesoscale elements method.
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the mixing layer for the dimensionless distance downstream

shown in the legend. Symbols show measurements of LaRue

& Libby(1981). The lines show the profiles obtained with

the mesoscale elements method.
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Illustration of the method: mixing layer scalar pdf
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η = −00.6,−0.01, 0.04 for the dimensionless distance

downstream shown in the legend.Symbols show measure-

ments of LaRue & Libby(1981). The lines show the profiles

obtained with the mesoscale elements method.
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Conclusions

• Flow description is formulated in terms of mesoscale elements, which are Lagrangian elements of finite

mass defining the flow statistics over a certain region of influence. These elements undergo deformation

by fluctuating strain field, and this deformation determines the rate of molecular transport between

them.

• The molecular transport is expressed as effect of pairwise m.e. interactions and it is shown that these

interactions satisfy the relevant conservation laws.

• This approach may be viewed as Lagrangian equivalent of the so-called “Large-Eddy Simulations”

gaining prominence in Eulerian fluid dynamics.

• The first application of the mesoscale elements method to a simple mixing layer produced qualitatively

correct results in good agreement with the measurements not only the mean and root-mean square

scalar values, but also the probability distributions and higher order moments.
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