

PASSIVE SCALAR DISSIPATION IN A TURBULENT ROUND JET.

A. Benaissa¹, and J. Lemay² and M. Sehaba

 ¹Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
 ²Université Laval, Department of Mechanical Engineering, Québec, QC, Canada G1V 0A6

1

Outline:

- **Experimental details**
- **Flow characteristics**
- Prediction of scalar dissipation and small scale lengths on the jet centerline.
- Consequences of self-preservation out of the jet centerline.

Introduction

Panchapakesan and Lumley, 1993
 Bogey and C. Bailly , 2009

Budgets of turbulent kinetic energy, Reynolds stresses, variance of temperature fluctuations and turbulent heat fluxes in a round jet.

Alexis Darisse, Jean Lemay and Azemi Benaissa J. Fluid Mech. (2015), vol. 774, pp 95-142.

* Introduction Bibliography

- *Landau and Lifshitz (1959)
- *Friehe, Van Atta and Gibson (1971)
- *Antonia, Satyaprakash, Hussain (1980)
- *Ruffin, Schiestel, Anselmet, Amielh and Fulachier (1994)
- *Dimotakis (2000)
- *Duffet and Benaissa (2012)
- *Benaissa and Gisselbrecht (2013)
- *Mi, Xu and Zhou (2013)
- *Thiesset, Antonia and Djenidi (2014)
- *Lemay, Djenidi, Antonia and Benaissa (2019)

Experimental details (Exp 1)

Experimental details (Exp 1)

Jet flow Conditions:

Medium	Air
Exit type	Top hat
Conditions	Free
U_j/U_1	-
Meas. tech.	LDV-CC
Range x/D	30
$Re_D \times 10^4$	15
U_{jet} [m/s]	36.4
<i>D</i> [mm]	63.2
B_U	6.2
B_{R_U}	0.091
$B_{\theta}(B_C)$	4.8
$B_{R_{\theta}}(B_{R_{C}})$	0.113
Θ_{Jet} [°C]	20

Measurement position:

Cold wire characteristics:

C.W. :	$d = 0.58 \mu{ m m}$
	$l/d \simeq 1000$
	$f_c \simeq 8.5 \text{ kHz} \text{ (typically)}$
	Compensated for frequency response

Flow characteristics (Exp 1)

 $\mathcal{E}_{\kappa} R_{u}^{\prime} / U_{0}^{3} = 0.01652$

Self similar behavior on the jet centerline is reached at x/D = 30

Experimental details (Exp 2)

Ka	nge x/D	0 to 90	
Re)	26000	
Ujet	(m/s)	18	
D (mm)	29.54	
Bu		5.93	
B _{Ru}	L	0.102	
Β _θ		5.24	
Θ_{jet}	(°C)	18	
A _I		0.25	
B _I		0.18	

Experimental details (Exp 2)

Prediction of scalar dissipation and small scale lengths on the jet centerline.

Kinetic energy budget –

Panchapakesan and Lumley, 1993 Bogey and C. Bailly, 2009

$$\frac{\varepsilon_k D}{U_j^3} = A_{\varepsilon k} \cdot (\frac{x - x_0}{D})^{-4}$$

$$\frac{\varepsilon_k R_u}{U_0^3} = \varepsilon_k^* = B_{RU} A_I^2 (2+R)$$

$$A_I = \frac{u}{U_0}$$
 and $\mathbf{R} = \left(\frac{v}{u}\right)^2$

 $A_{\varepsilon k} = B_U^3 A_I^2 (2+R)$

Prediction of scalar dissipation and small scale lengths on the jet centerline.

temperature variance budget

Antonia and Mi, 1993

Budget of $\ell^2/2$ on the jet centerline

$$\epsilon^*_{\theta_{Axis}} = -C^*_{\theta_{Axis}} + P^*_{\theta_{Axis}} + D^*_{\theta_{Axis}} + M^*_{\theta_{Axis}}$$

$$\Rightarrow \epsilon_{\theta_{Axis}}^* = B_{R_U} \gamma \left[\frac{\overline{\theta^2}}{\Theta_0^2} + \frac{\overline{u\theta}}{U_0 \Theta_0} + \frac{\overline{u\theta^2}}{U_0 \Theta_0^2} \left(\frac{1}{2\gamma} + 1 \right) \right] - \frac{\mathrm{d}}{\mathrm{d}\xi} \left(\frac{\overline{v\theta^2}}{U_0 \Theta_0^2} \right) \bigg|_{\xi=0} + M_{\theta_{Axis}}^*$$

0.00948
0.00343
0.00212

$$-1.24 \times 10^{-5}$$

0.00395
 -2.37×10^{-6}
Darisse et al. (2014)
 $\epsilon_{\theta}^{*} \simeq B_{R_{U}} \left[B_{I}^{2} + c_{u\theta}A_{I}B_{I} + c_{\theta} \left(\frac{\mathcal{R} + 1/2}{\mathcal{R} + 2} \right) \right].$

$$A_{\epsilon_{\theta}} \simeq B_U B_{\theta}^2 \left[B_I^2 + c_{u\theta} A_I B_I + c_{\theta} \left(\frac{\mathcal{R} + 1/2}{\mathcal{R} + 2} \right) \right],$$

Lemay et al. (2019)

From the budget ratios

$$A_{\epsilon\theta} = 2.76B_I^2 B_U B_\theta^2$$

From the time scale ratio

$$\Re = \frac{\theta^2 / 2\epsilon_\theta}{k / \epsilon_k}$$

$$A_{\epsilon\theta} = \frac{1}{2\Re} B_I^2 B_U B_\theta^2 \left[\frac{2+R}{0.5+R}\right]$$

$$\frac{\lambda_{\theta}}{D} = \left[\frac{3B_I^2 B_{\theta}^2}{Pr Re_j A_{\epsilon_{\theta}}}\right]^{1/2} \frac{(x - x_0)}{D}$$
$$\frac{Pe_{\lambda}}{Re^{1/2}} = B_U A_I B_I B_{\theta} \sqrt{\frac{3Pr}{A_{\epsilon_{\theta}}}}$$

* **Dissipation**, R_{λ} and Pe_{λ}

15

Thiesset et al 6.4 %

Lemay et al 2 %, Model R 9 %, Budget 3 %

Thiesset et al 5 %

Lemay et al 6 %, Model R 11 %,

* Small scale length evolution on the centerline

η Thiesset et al 8%

Prediction of scalar dissipation and small scale lengths out of the jet centerline.

* Consequences of self-preservation out of the axis (Kolmogorov and Corrsin length scales)

* Consequence of self-preservation out of the jet centerline axis (R_{λ} and $Pe\lambda$)

Conclusions

- Prediction relationship for kinetic energy dissipation -Thiesset et al (2014) (6.4%).
- Test of the prediction relationship of temperature dissipation -Lemay et al (2019) (2%).
- Introduction of new relationships for temperature dissipation (R 9 % and Budget 3 %).
- Observation of the behaviour outside the centerline of turbulent length scales and R_{λ} and Pe_{λ} (Validity of the linear laws for small scale lengths ~ 2D).
- Future work, consequence of the complete self-similarity on spectral distributions of k and θ.