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I would like to mention three scientific collaborations with Fabien:
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plane jets, Journal of Fluid Mechanics, 546, 153-191 (2006)
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M. Abid, F. Anselmet, C. Kharif, Cépaduès ed. (2017)

Co-supervisor of the PhD thesis of R. Vallon: Liquid jet atomization
small and large turbulent scales (2018–)
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Motivations: breaking of gravity waves

Ultimately gravity waves breaks: turbulence is generated and plays a
significant role in the interaction of water waves with the atmosphere.

Wave-breaking still an open problem of nonlinearity.

Plunging breaker Spilling breaker
(www.wikipedia.fr) (www.geology.uprm.edu)

Characterization: a) kinematically: u > c , b) geometrically: infinite
wave-profile slope, i.e. a singularity. Only pre-breaking here.
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Motivations
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Generally, in coastal and ocean waters, current velocity profiles are
established by bottom friction and wind stress at the sea surface, and
consequently are vertically varying → Vorticity.

Purpose: to derive an approximate model to investigate nonlinear
long wave dynamics in the presence of a vertically sheared current of
constant Vorticity.

Constant vorticity: the first approximation (simplification) that should
be tried.
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Motivations: breaking of gravity waves

The KdV equation is not the appropriate model for describing wave
evolution to breaking.

Whitham (1974) suggested a model equation (without vorticity) for
breaking.

The Whitham equation and KdV equation have the same (weak)
nonlinear term and different dispersive terms.

The dispersive term of the Whitham equation corresponds to exact
linear dispersion and consequently allows the introduction of small
scales which are important in the breaking phenomenon.

We will generalize the Whitham equation to the fully nonlinear case,
for flows with constant vorticity (Gen-Whitham equation), and obtain
the Whitham equation with constant vorticity in the weakly nonlinear
limit (Vor-Whitham equation).
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Model equations with vorticity

Freeman & Johnson (1970) =⇒ KdV eq.

Choi (2003) =⇒ GN eqs. =⇒ Boussinesq eqs. =⇒ KdV eq.

Johnson (2012) =⇒ Boussinesq eqs. and Camassa-Holm eq.

Richard & Gavriluyk (2015) =⇒ Generalised GN eqs. (shear flows
and turbulence).

Castro & Lannes (2014) =⇒ GN eqs. with general vorticity.

Kharif and Abid (2018) =⇒ Generalized Whitham equation with
constant vorticity: one equation model for the free surface:
Nonlinear water waves in shallow water in the presence of constant
vorticity: A Whitham approach, Eur. J. Mechanics / B Fluids 72
(2018) 12-22.

Fully nonlinear
Fully linearly dispersive
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Model equations with vorticity

St Venant equations (shallow water equations) in the presence of a
vertically sheared current: U = U0 + Ωz

∂η

∂t
+

∂

∂x
[u(η + h) +

Ω

2
η2 + U0η] = 0 (1)

∂u

∂t
+ (u + U0 − Ωh)ux + gηx = 0 (2)

U0: velocity at the free surface z = 0 of the underlying current.
η(x , t): free surface elevation.
u(x , t): longitudinal component of the wave induced velocity.
Ω: shear intensity (the vorticity is −Ω)
h: water depth at rest.
g : gravity.
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Model equations with vorticity

The hyperbolic equations (1) and (2) admit the following Riemann
invariants:

u +
ΩH

2
±
{√

gH + Ω2H2/4+

g

Ω
ln

[
1 +

Ω

2g
(ΩH + 2

√
gH + Ω2H2/4)

]}
= constant

on characteristic lines

dx

dt
= u + U0 +

1

2
Ω(η − h)±

√
gH +

Ω2H2

4
(3)

where H = η + h.

For Ω→ 0 and U0 = 0 =⇒ u ± 2
√
gH = cst on dx/dt = u ±

√
gH
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Model equations with vorticity

The constant is determined for u = 0 and η = 0 (H = h).

Finally, Riemann invariants with vorticity read:

u +
Ωη

2
+

√
gH + Ω2H2/4−

√
gh + Ω2h2/4

+
g

Ω
ln

[
1 + Ω

2g (ΩH + 2
√

gH + Ω2H2/4)

1 + Ω
2g (Ωh + 2

√
gh + Ω2h2/4)

]
= 0 (4)

u +
Ωη

2
−

√
gH + Ω2H2/4 +

√
gh + Ω2h2/4

− g

Ω
ln

[
1 + Ω

2g (ΩH + 2
√

gH + Ω2H2/4)

1 + Ω
2g (Ωh + 2

√
gh + Ω2h2/4)

]
= 0 (5)
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Model equations with vorticity

Let us consider a wave moving rightwards:

u = −Ωη

2
+

√
gH + Ω2H2/4−

√
gh + Ω2h2/4

+
g

Ω
ln

[
1 + Ω

2g (ΩH + 2
√

gH + Ω2H2/4)

1 + Ω
2g (Ωh + 2

√
gh + Ω2h2/4)

]
(6)

For Ω→ 0 we have u → 2
√
gH − 2

√
gh
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Model equations with vorticity: Vor-Riemann equation

Substituting the expression u(x , t) into the conservation of mass
equation (1) gives (Vor-Riemann equation):

ηt +

{
U0 −

Ωh

2
+ 2
√
g(η + h) + Ω2(η + h)2/4−

√
gh + Ω2h2/4+

g

Ω
ln

[
1 +

Ω

2g

Ωη + 2(
√

g(η + h) + Ω2(η + h)2/4−
√
gh + Ω2h2/4)

1 + Ω
g ( Ωh

2 +
√
gh + Ω2h2/4)

]}
ηx = 0

(7)

For U0 = 0 and Ω→ 0 equation (7) reduces to:

Ht + (3
√
gH − 2

√
gh)Hx = 0, with H = η + h. (8)
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Model equations with vorticity: Gen-Whitham equation

Following Whitham (1974) and Drazin & Johnson (1989) the full
linear dispersion is introduced heuristically:

ηt +

{
U0 −

Ωh

2
+ 2
√
g(η + h) + Ω2(η + h)2/4−

√
gh + Ω2h2/4+

g

Ω
ln

[
1 +

Ω

2g

Ωη + 2(
√

g(η + h) + Ω2(η + h)2/4−
√
gh + Ω2h2/4)

1 + Ω
g ( Ωh

2 +
√
gh + Ω2h2/4)

]}
ηx+

K ∗ ηx = 0. (9)

where K ∗ ηx is a convolution product. The kernel K is given as the
inverse Fourier transform of the linear phase velocity of gravity waves
in finite depth in the presence of constant vorticity Ω: K = F−1(c)
with

c = U0 −
Ω tanh(kh)

2k
+

√
g tanh(kh)

k
+

Ω2 tanh2(kh)

4k2
.
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KdV equation with vorticity

For weakly nonlinear (η/h� 1) and weakly dispersive (kh� 1)
equation (9) reduces to the KdV equation with vorticity (with U0=0)

ηt + c0(Ω)ηx + c1(Ω)ηηx + c2(Ω)ηxxx = 0, (10)

with

c0 = −Ω

2
+
√

1 + Ω2/4,

c1 =
3 + Ω2

√
4 + Ω2

,

c2 =
2 + Ω2 − Ω

√
4 + Ω2

6
√

4 + Ω2
.

The KdV equation (10) has been normalized so that h = 1 and g = 1
and is identical to those derived by Freeman & Johnson (1970) and
Choi (2003) who used multiple scale methods.
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Whitham equation with vorticity: Vor-Whitham

For weakly nonlinear waves (η/h� 1) the Gen-Whitam equation (9)
becomes the Whitham equation with constant vorticity
(Vor-Whitham) given by

ηt +
3gh + h2Ω2

h
√

4gh + h2Ω2
ηηx + K ∗ ηx = 0 (11)

Note that in the Whitham equation the exact linear dispersion is
considered unlike the KdV equation
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Validation of the numerical method

Numerical integration of equations Gen-Whitham (9), Vor-Kdv (10) and
(11)

Pseudo-spectral method (number of grid points Nx = 214)

Runge-Kutta of order 4 (∆t = 0.005, g = 1, h = 1)

KdV Invariants (mass, momentum and energy) are conserved with a
relative accuracy of O(10−9)
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Validation of the numerical method: Dam-Break

For U0 = 0 and Ω→ 0 the Vor-Riemann equation (7) reduces to

Ht + (3
√
gH − 2

√
gh)Hx = 0, with H = η + h. (12)

For t > 0, the nonlinear analytical solution of equation (12) is

H(x , t) = h, u(x , t) = 0;
x

t
≥
√
gh

H(x , t) =
h

9

(
2 +

x√
gh t

)2

, u(x , t) = − 2
3

(√
gh − x

t

)
; −2

√
gh ≤ x

t
≤
√

gh

H(x , t) = 0, u(x , t) = 0;
x

t
≤ −2

√
gh (13)

At time t = 0 the initial condition is H(x , 0) = h(1 + tanh(2x))/2
and u(x , 0) = 0 everywhere
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Numerical validation: Dam-Break
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Figure: Dam-break: comparison between analytical (solid line) and numerical
solutions (◦) after the dam has broken. The dashed line represents the initial
condition at t = 0 (h = 1, g = 1).
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Validation of the Gen-Whitham model: Favre-waves

h ∆

h

Figure: Sketch of the evolution of an undular bore from its initial position

An undular bore is formed when a sudden discharge of water at rest
of depth h(1 + ∆) is initiated into still water of depth h. The bore is
the region of transition between two uniform depths.
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Validation of the Gen-Whitham model: Favre-waves

Favre’s experiments (1935) at Ecole Polytechnique Fédérale de Zurich

Canal dimensions: 73.58 m long, 0.42 m wide and 0.40 m height.
Water depth: h= 20 cm or h=10 cm
For ∆ < 0.28 =⇒ non breaking undular bores
For ∆ > 0.28 =⇒ breaking undular bores
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Validation of the Gen-Whitham model: Favre-wave
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Figure: Dimensionless height of the leading wave as a function of the initial
relative difference in water level. Favre’s experiments (◦), Gen-Whitham equation
(9) with damping (∗), KdV equation with damping (�). (U0,Ω) = (0, 0).

Malek ABID (IRPHE) Fab-60 2019 July, 09 2019 21 / 34



Validation of the Gen-Whitham model: Favre-wave
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Figure: Dimensionless wavelength of the trailing waves as a function of the initial
relative difference in water level. Favre’s experiments (◦), Gen-Whitham equation
(9) with damping (∗), KdV equation with damping (�). (U0,Ω) = (0, 0).
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Breaking time for hyperbolic waves and dispersive waves in
the presence of vorticity

The Vor-Riemann equation (7) (hyperbolic equation) in dimensionless
form (g = 1, h = 1) can be rewritten as follows

ηt + C(η)ηx = 0 (14)

C(η) = −Ω

2
+ 2
√

(η + 1) + Ω2(η + 1)2/4−

√
1 + Ω2/4 +

1

Ω
ln

[
1 +

Ω

2

Ωη + 2(
√

(η + 1) + Ω2(η + 1)2/4−
√

1 + Ω2/4)

1 + Ω( Ω
2 +

√
1 + Ω2/4)

]
Equation (14) is equivalent to the following system

dη

dt
= 0, along the characteristic curve

dx

dt
= C(η)
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Breaking time for hyperbolic waves with vorticity

The characteristic curves are straight lines in the (x , t)-plane

x = x0 + C(η0(x0))t

x = x0 + V(x0)t

η0(x) = η(x , 0) is the initial condition.

x0 is the point where the characteristic curve intersects the x-axis
(t = 0)

the slope of the profile at t is

∂η

∂x
=

dη0/dx0

1 + dV
dx0

t

On any characteristic for which dV
dx0

< 0 the slope of the profile

becomes infinite when t = −(dV/dx0)−1.
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Breaking time for hyperbolic waves with vorticity

Consequently, breaking wave first occurs on the characteristic curve
intersecting the x-axis at x0 = x0B for which dV

dx0
(x0B ) < 0 with

| dVdx0
(x0B )| is a maximum.

The breaking time is

tB = −(
dV
dx0

(x0B ))−1 (15)

Herein, the breaking wave phenomenon can be understood as the
blow-up of the slope in finite time tB .
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Breaking time for dispersive waves

For dispersive waves in shallow water, there is no analytical expression
of the breaking time.

The determination of the breaking time can be carried out
numerically (Sulem et al., 1983).

When η(x , t) is an analytic function, its Fourier coefficients (with
respect to x) decay faster than any power of 1/k (k is the
wavenumber) in the limit k →∞.

When η is singular, its Fourier coefficients decay algebraically with
1/k .

Hence, to detect the time of the appearance of the singularity we
assume that the Fourier coefficients of the solution η(x , t) behave as:

η̂k(t) = C (t)k−α(t)e−δ(t)k .

The breaking time is defined as the time of vanishing of the
analyticity strip: δ(tB) = 0.
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Validation: analyticity strip method

This method is validated against the time of breaking when all the
equations studied here are hyperbolic (vanishing dispersion).

In those cases, the expression of the time of breaking could be
obtained analytically as a function of Ω:

tB = −(
dV
dx0

(x0B ))−1

The initial condition is

η(x , 0) = a cos(kx) +
3− σ2

4σ3
a2k cos(2kx + ϕ) (16)

where σ = tanh(kh), h = 1, k = 1, a = 0.10 and ϕ = 0.
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Validation: analyticity strip method
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Figure: Theoretical and numerical breaking times as a function of the vorticity
within the framework of Vor-Riemann equation (7). The solid line corresponds to
the theoretical solution whereas the circles correspond to numerical values
(δ(tB) = 0).

The breaking time decreases when the shear intensity increases.
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Breaking time: Vor-Whitham

−4 −2 0 2 4
0

1

2

3

4

5

6

Breaking

for Vor−Whitham

No Breaking

Hyperbolic

Ω

t B

−4 −2 0 2 4
0

1

2

3

4

5

6

Breaking for Vor−WhithamNo Breaking

Hyperbolic

Ω

t B

Figure: Breaking time as a function of the vorticity for the symmetric initial condition (a = 0.16, ϕ = 0) (left) and for the
asymmetric initial condition (a = 0.16, ϕ = 3π/2) (right). The solid line corresponds to the hyperbolic Vor-Riemann equation
(7) and the circle to the Vor-Whitham equation (11).

For large values of Ω the model is hyperbolic in nature.
There is a critical value of Ω for breaking to occur. Obviously, it
depends on dispersion.
Negative values of the vorticity stimulate the breaking phenomenon
(opposing current).
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Breaking time: Gen-Whitham
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Figure: Breaking time as a function of the vorticity within the framework of the
generalised Whitham equation with a symmetric initial condition
(a = 0.20, ϕ = 0) (left) and an asymmetric initial condition
(a = 0.20, ϕ = 3π/2) (right). The solid line corresponds to the hyperbolic case.

Same conclusions as those for Vor-Whitham equation.

The breaking time is smaller than that for Vor-Whitham equation.
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Pre-breaking profiles of the surface elevation

−3 −2 −1 0 1 2 3
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

x

η

Ω=1

−3 −2 −1 0 1 2 3
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x
η

Ω=1

Figure: Time evolution of the initial symmetric profile (a = 0.20, ϕ = 0) (left)
and asymmetric initial profile (a = 0.20, ϕ = 3π/2) (right) to breaking for Ω = 1.

Gen-Whitham equation, g = 1, h = 1.
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Conclusions

We have derived a one equation model to investigate nonlinear long
wave dynamics in the presence of a vertically sheared current of
constant Vorticity.

The model is validated.

We have studied the effect of constant vorticity on the breaking of
long gravity waves:

The sign of the vorticity is important: negative vorticity (opposing
current) stimulate the breaking phenomenon.
For dispersive waves, there is a threshold of the vorticity value for the
breaking to occur.

Future work: we will use BIEM with constant vorticity to study the
breaking of the undular bore using a geometric criterion, and will
compare it with the kinematic criterion of breaking (u = c ,
collaboration with Prof. H. Kalisch, Univ. of Bergen, Norway).
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The End
Thank you for attention
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Solitary and Cnoidal waves: vorticity effect
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Figure: Profiles of solitary waves (left) and cnoidal waves (right) for various values
of the vorticity. Solid line (Ω = 0), dashed line (Ω = −1) and dotted line (Ω = 1).
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